Performance assessment of a direct formic acid fuel cell system through exergy analysis

[1]  T. Springer,et al.  Polymer Electrolyte Fuel Cell Model , 1991 .

[2]  G. Maggio,et al.  Modelling of temperature distribution in a solid polymer electrolyte fuel cell stack , 1996 .

[3]  Ibrahim Dincer,et al.  On exergy and environmental impact , 1997 .

[4]  James Larminie,et al.  Fuel Cell Systems Explained , 2000 .

[5]  S. Chan,et al.  A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness , 2001 .

[6]  Ibrahim Dincer,et al.  Energy, Entropy and Exergy Concepts and Their Roles in Thermal Engineering , 2001, Entropy.

[7]  I. Dincer The role of exergy in energy policy making , 2002 .

[8]  S. Ha,et al.  Direct formic acid fuel cells , 2002 .

[9]  H. Ho,et al.  Modelling of simple hybrid solid oxide fuel cell and gas turbine power plant , 2002 .

[10]  S. Ha,et al.  Catalysts for direct formic acid fuel cells , 2003 .

[11]  A. Kazim Exergy analysis of a PEM fuel cell at variable operating conditions , 2004 .

[12]  Shigenori Mitsushima,et al.  Exergy analysis of polymer electrolyte fuel cell systems using methanol , 2004 .

[13]  Su Ha,et al.  High power density direct formic acid fuel cells , 2004 .

[14]  M.H. Nehrir,et al.  Dynamic models and model validation for PEM fuel cells using electrical circuits , 2005, IEEE Transactions on Energy Conversion.

[15]  A. Faghri,et al.  Challenges and opportunities of thermal management issues related to fuel cell technology and modeling , 2005 .

[16]  Ibrahim Dincer,et al.  Thermodynamic analysis of a PEM fuel cell power system , 2005 .

[17]  Su Ha,et al.  Characterization of a high performing passive direct formic acid fuel cell , 2006 .

[18]  K. Scott,et al.  Characterisation of thermally deposited platinum and palladium catalysts for direct formic acid fuel cells , 2007 .

[19]  Ibrahim Dincer,et al.  Exergoeconomic analysis of a vehicular PEM fuel cell system , 2007 .

[20]  G. Maranzana,et al.  PEM FUEL CELL VOLTAGE TRANSIENT RESPONSE TO A THERMAL PERTURBATION , 2008 .

[21]  Xingwen Yu,et al.  Recent advances in direct formic acid fuel cells (DFAFC) , 2008 .

[22]  Ibrahim Dincer,et al.  Performance investigation of a combined MCFC system , 2009 .

[23]  Zhihua Yang,et al.  An experimental study on the dynamic process of PEM fuel cell stack voltage , 2011 .

[24]  Nouri J. Samsatli,et al.  Fuel cell systems optimisation – Methods and strategies , 2011 .

[25]  I. Dincer,et al.  Energy and exergy analyses of a combined molten carbonate fuel cell – Gas turbine system , 2011 .

[26]  Fabio Rinaldi,et al.  Thermal–economic–environmental analysis and multi-objective optimization of an internal-reforming solid oxide fuel cell–gas turbine hybrid system , 2012 .

[27]  Shu-Yong Zhang,et al.  Formic acid–Formate blended solution: A new fuel system with high oxidation activity , 2012 .

[28]  Ibrahim Dincer,et al.  Performance investigation of a transportation PEM fuel cell system , 2012 .

[29]  J. Mayer,et al.  Catalytic disproportionation of formic acid to generate methanol. , 2013, Angewandte Chemie.

[30]  Shinji Kimijima,et al.  The effect of overpotentials on the transient response of the 300W SOFC cell stack voltage , 2014 .

[31]  S. O. Mert,et al.  Exergoeconomic based multi-objective optimisation of a solid oxide fuel cell system , 2014 .

[32]  A. U. Chávez-Ramírez,et al.  Direct formic acid microfluidic fuel cell design and performance evolution , 2014 .

[33]  A parametric study of the direct formic acid fuel cell (DFAFC) performance and fuel crossover , 2014 .

[34]  J. Matos,et al.  Direct formic acid fuel cells on Pd catalysts supported on hybrid TiO2-C materials , 2015 .