Blast effects of external explosions

Security considerations for industrial production and storage require characterization of the mechanical effects caused by blast waves resulting from a detonation or deflagration. This paper evaluates current analytical methods to determine the characteristic parameters of a blast wave with respect to the pressure, impulse and duration of the positive phase of the blast. In the case of a detonation, the trinitrotoluene (TNT) equivalent-based method determines the mass of TNT that is equivalent to the gas load used during the explosion and evaluates the characteristic parameters. A review of the energy values for TNT detonation is given, and the relationships used to calculate the TNT equivalent are proposed. The identification of the effects of the pressure wave following the explosion of a gaseous charge in free space equates the deflagration propagation to a piston. In the case of an explosion in an obstructed medium, the deflagration is considered to consist of a basic set of explosions involved in the generation of an intense blast wave. An explosion creates high pressures if the flame reaches high speeds, which occurs in the presence of turbulent flow at the source level or for a degree of confinement and obstruction in the medium.

[1]  Roger A. Strehlow,et al.  BLAST WAVES GENERATED BY CONSTANT VELOCITY FLAMES: A SIMPLIFIED APPROACH , 1975 .

[2]  W. Jianling,et al.  Determination of heats of detonation and influence of components of composite explosives on heats of detonation of high explosives , 1995 .

[3]  Quentin A. Baker,et al.  Vapor cloud explosion analysis , 1996 .

[4]  Q. A. Baker,et al.  A new set of blast curves from vapor cloud explosion , 1999 .

[5]  W. E. Baker Explosions in air , 1973 .

[6]  N. F. Scilly Measurement of the explosive performance of high explosives , 1995 .

[7]  Sophie Trélat,et al.  Impact de fortes explosions sur les bâtiments représentatifs d’une installation industrielle , 2006 .

[8]  K. Cheval,et al.  Strong explosion near a parallelepipedic structure , 2007 .

[9]  J. Trulsen,et al.  Height of burst explosions: a comparative study of numerical and experimental results , 2009 .

[10]  J. Bowen,et al.  Overpressures Imposed by a Blast Wave , 1988 .

[11]  Harald Kleine,et al.  Characteristics of Blast Waves Generated by Milligram Charges , 2000 .

[12]  SOLUTION DES EQUATIONS D'EULER ASSOCIEES A L'EXPANSION D'UNE SPHERE A VITESSE CONSTANTE. , 1979 .

[13]  Kazuyoshi Takayama,et al.  Studies of the TNT equivalence of silver azide charges , 2003 .

[14]  Paul Amyotte,et al.  Second International Symposium on Hazards, Prevention, and Mitigation of Industrial Explosions , 2000 .

[15]  Edward D. Esparza,et al.  Blast measurements and equivalency for spherical charges at small scaled distances , 1986 .

[16]  Isabelle Sochet,et al.  Blast Wave Characteristics and Equivalency , 2010 .

[17]  A. C. van den Berg,et al.  The multi-energy method : A framework for vapour cloud explosion blast prediction , 1985 .

[18]  J. M. Dewey,et al.  The TNT equivalence of an optimum propane–oxygen mixture , 2005 .

[19]  S. Dorofeev Evaluation of safety distances related to unconfined hydrogen explosions , 2007 .

[20]  Quentin A. Baker,et al.  An update to the Baker–Strehlow–Tang vapor cloud explosion prediction methodology flame speed table , 2005 .

[21]  Hermann Prörtner Gas cloud explosions and resulting blast effects , 1977 .

[22]  R. Philip Cleaver,et al.  An analysis of the mechanisms of overpressure generation in vapour cloud explosions , 1996 .

[23]  J. Leyer,et al.  Flow field induced by unconfined spherical accelerating flames , 1981 .