A mathematical description of peristaltic hydromagnetic flow in a tube

Abstract Peristaltic motion of an incompressible non-Newtonian fluid in a deformable tube is studied under long wavelength and low Reynolds number. The effect of magnetic field on the motion of a Johnson–Segalman fluid has been modelled. Analytical solutions are obtained for the stream function, axial velocity and axial pressure gradient under the small Weissenberg number. The pressure rise and frictional force per wavelength have been computed through numerical integration. The study shows that, in addition to Weissenberg number and the effect of magnetic field, the occlusion and volume flux also affect the peristaltic flow. These effects are noticeable in the stream function, axial velocity, axial pressure gradient, the pressure rise and the frictional force. Graphs are plotted for axial pressure gradient, pressure rise and frictional force and discussed in detail.

[1]  Robin Ball,et al.  A molecular approach to the spurt effect in polymer melt flow , 1986 .

[2]  David S. Malkus,et al.  Quadratic dynamical systems describing shear flow of non-newtonian fluids , 1989 .

[3]  L M Srivastava,et al.  Peristaltic transport of blood: Casson model--II. , 1984, Journal of biomechanics.

[4]  Wenchang Tan,et al.  Stokes’ first problem for a second grade fluid in a porous half-space with heated boundary , 2005 .

[5]  S. Usha,et al.  Peristaltic transport of two-layered power-law fluids. , 1997, Journal of biomechanical engineering.

[6]  Tasawar Hayat,et al.  Peristaltic Flow of a Magnetohydrodynamic Johnson–Segalman Fluid , 2005 .

[7]  Constantin Fetecau,et al.  The first problem of Stokes for an Oldroyd-B fluid , 2003 .

[8]  Tasawar Hayat,et al.  Peristaltic transport of a third-order fluid in a circular cylindrical tube , 2002 .

[9]  Tasawar Hayat,et al.  Peristaltic transport of an Oldroyd-B fluid in a planar channel , 2004 .

[10]  Robert W. Kolkka,et al.  Spurt phenomena of the Johnson-Segalman fluid and related models , 1988 .

[11]  Kumbakonam R. Rajagopal,et al.  Some simple flows of a Johnson-Segalman fluid , 1999 .

[12]  D. Segalman,et al.  A model for viscoelastic fluid behavior which allows non-affine deformation , 1977 .

[13]  A. M. Siddiqui,et al.  Peristaltic motion of a third-order fluid in a planar channel , 1993 .

[14]  Chun-I Chen,et al.  Unsteady unidirectional flow of second grade fluid between the parallel plates with different given volume flow rate conditions , 2003, Appl. Math. Comput..

[15]  Tasawar Hayat,et al.  Magnetic Fluid Model Induced by Peristaltic Waves , 2004 .

[16]  Constantin Fetecau,et al.  UNSTEADY FLOWS OF OLDROYD-B FLUIDS IN A CHANNEL OF RECTANGULAR CROSS SECTION , 2005 .

[17]  S. Weinberg,et al.  Peristaltic pumping with long wavelengths at low Reynolds number , 1968, Journal of Fluid Mechanics.

[18]  G. Böhme,et al.  Peristaltic Flow of Viscoelastic Liquids , 1983 .

[19]  G. Sekhon,et al.  Pumping action on blood by a magnetic field. , 1977, Bulletin of mathematical biology.

[20]  A. M. Kraynik,et al.  Slip at the Wall and Extrudate Roughness with Aqueous Solutions of Polyvinyl Alcohol and Sodium Borate , 1981 .

[21]  Alden M. Provost,et al.  A theoretical study of viscous effects in peristaltic pumping , 1994, Journal of Fluid Mechanics.

[22]  G. Radhakrishnamacharya,et al.  Long wavelength approximation to peristaltic motion of a power law fluid , 1982 .

[23]  Constantin Fetecau,et al.  Decay of a potential vortex in an Oldroyd-B fluid , 2005 .

[24]  Moustafa El-Shahed,et al.  Peristaltic transport of Johnson-Segalman fluid under effect of a magnetic field , 2005 .

[25]  Kh.S. Mekheimer,et al.  Peristaltic flow of blood under effect of a magnetic field in a non-uniform channels , 2004, Appl. Math. Comput..

[26]  Asim Siddiqui,et al.  Peristaltic flow of a second-order fluid in tubes , 1994 .

[27]  M. R. Kaimal,et al.  On Peristaltic Pumping , 1978 .

[28]  Tasawar Hayat,et al.  Peristaltic motion of a Johnson-Segalman fluid in a planar channel , 2003 .

[29]  Wenchang Tan,et al.  STOKES FIRST PROBLEM FOR AN OLDROYD-B FLUID IN A POROUS HALF SPACE , 2005 .

[30]  J. B. Shukla,et al.  Effects of stenosis on non-Newtonian flow of the blood in an artery. , 1980, Bulletin of mathematical biology.

[31]  R. P. Agarwal,et al.  Oscillating Flow of a Conducting Fluid With a Suspension of Spherical Particles , 1980 .

[32]  C. Fetecau,et al.  On some axial Couette flows of non-Newtonian fluids , 2005 .

[33]  David S. Malkus,et al.  Dynamics of shear flow of a non-Newtonian fluid , 1990 .