Particle models and the small-scale structure of dark matter

The kinetic decoupling of weakly interacting massive particles (WIMPs) in the early universe sets a scale that can directly be translated into a small-scale cutoff in the spectrum of matter density fluctuations. The formalism presented here allows a precise description of the decoupling process and thus the determination of this scale to a high accuracy from the details of the underlying WIMP microphysics. With decoupling temperatures of several MeV to a few GeV, the smallest protohalos to be formed range between 10-11 and almost 10-3 solar masses?a somewhat smaller range than what was found earlier using order-of-magnitude estimates for the decoupling temperature; for a given WIMP model, the actual cutoff mass is typically about a factor of 10 greater than derived in that way, though in some cases the difference may be as large as a factor of several hundreds. Observational consequences and prospects to probe this small-scale cutoff, which would provide a fascinating new window into the particle nature of dark matter, are discussed.

[1]  M. Kamionkowski,et al.  Galactic substructure and direct detection of dark matter , 2008, 0801.3269.

[2]  Michele Doro,et al.  Dark matter signals from Draco and Willman 1: prospects for MAGIC II and CTA , 2008, 0809.2269.

[3]  V.Berezinsky,et al.  Small - scale clumps in the galactic halo and dark matter annihilation , 2003 .

[4]  On mini-halo encounters with stars , 2006, astro-ph/0604142.

[5]  U. California,et al.  The distribution and kinematics of early high-σ peaks in present-day haloes: implications for rare objects and old stellar populations , 2005, astro-ph/0506615.

[6]  S. Heinemeyer,et al.  The Mass of the Lightest MSSM Higgs Boson: A Compact Analytical Expression at the Two-Loop Level , 1999, hep-ph/9903404.

[7]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[8]  Griest Erratum: Cross sections, relic abundance, and detection rates for neutralino dark matter , 1989, Physical review. D, Particles and fields.

[9]  2 Axion Cosmology , 2006, astro-ph/0610440.

[10]  Kinetic decoupling of neutralino dark matter , 2001, astro-ph/0103452.

[11]  Z. Fodor,et al.  Critical point of QCD at finite T and mu, lattice results for physical quark masses , 2004, hep-lat/0402006.

[12]  Joshua D. Simon,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE KINEMATICS OF THE ULTRA-FAINT MILKY WAY SATELLITES: SOLVING THE MISSING SATELLITE PROBLEM , 2022 .

[13]  Lars Bergström,et al.  Non-baryonic dark matter: observational evidence and detection methods , 2000 .

[14]  Radiative corrections to Kaluza-Klein masses , 2002, hep-ph/0204342.

[15]  L. Bergstrom,et al.  DarkSUSY: Computing Supersymmetric Dark Matter Properties Numerically , 2004 .

[16]  S. Heinemeyer,et al.  QCD corrections to the masses of the neutralCP-even Higgs bosons in the minimal supersymmetric standard model , 1998 .

[17]  Dark matter and collider phenomenology of universal extra dimensions , 2007, hep-ph/0701197.

[18]  Alexander S. Szalay,et al.  Measuring the Baryon Acoustic Oscillation scale using the Sloan Digital Sky Survey and 2dF Galaxy Redshift Survey , 2007 .

[19]  S. Koushiappas The detection of subsolar mass dark matter halos , 2009, 0905.1998.

[20]  P. Gondolo,et al.  Ultra-cold WIMPs: relics of non-standard pre-BBN cosmologies , 2008, 0803.2349.

[21]  Effects of cold dark matter decoupling and pair annihilation on cosmological perturbations , 2006, astro-ph/0607319.

[22]  Radiative corrections to the inflaton potential as an explanation of suppressed large scale power in density perturbations and the cosmic microwave background , 2004, hep-ph/0410117.

[23]  M. Kaplinghat Dark matter from early decays , 2005, astro-ph/0507300.

[24]  K. Griest,et al.  Cross sections, relic abundance, and detection rates for neutralino dark matter. , 1988, Physical review. D, Particles and fields.

[25]  D. Toussaint,et al.  QCD thermodynamics with three flavors of improved staggered quarks , 2005 .

[26]  R. Viollier,et al.  Ghost condensate busting , 2008, 0801.3942.

[27]  Anisotropy of the cosmic gamma-ray background from dark matter annihilation , 2005, astro-ph/0512217.

[28]  Robert P. Johnson,et al.  Pre-launch estimates for GLAST sensitivity to dark matter annihilation signals , 2008, 0806.2911.

[29]  Felix Stoehr,et al.  Dark matter annihilation in the halo of the Milky Way , 2003, astro-ph/0307026.

[30]  Owe Philipsen,et al.  Dark matter of weakly interacting massive particles and the QCD equation of state , 2005 .

[31]  O. University,et al.  The survival and disruption of cold dark matter microhaloes: implications for direct and indirect detection experiments , 2006, astro-ph/0608495.

[32]  F. Paige,et al.  Simulating Supersymmetry with ISAJET 7.0/ ISASUSY 1.0 , 1993, hep-ph/9305342.

[33]  M. Zaldarriaga,et al.  Small-scale power spectrum of cold dark matter , 2005, astro-ph/0504112.

[34]  What mass are the smallest protohalos? , 2006, Physical review letters.

[35]  R. Nichol,et al.  Measuring the Baryon Acoustic Oscillation scale using the SDSS and 2dFGRS , 2007, 0705.3323.

[36]  Stefan Hofmann,et al.  The power spectrum of SUSY-CDM on subgalactic scales , 2003, astro-ph/0309621.

[37]  G. Bertone,et al.  Particle dark matter: Evidence, candidates and constraints , 2004, hep-ph/0404175.

[38]  Andrew Spray,et al.  Little Higgs dark matter , 2006 .

[39]  Phase Transitions in the Early and Present Universe , 2006, hep-ph/0602002.

[40]  Lars Bergstrom,et al.  New gamma-ray contributions to supersymmetric dark matter annihilation , 2007, 0710.3169.

[41]  P. Gondolo,et al.  Ultra-cold weakly interacting massive particles: relics of non-standard pre-big-bang-nucleosynthesis cosmologies , 2008 .

[42]  Dark matter annihilation or unresolved astrophysical sources? Anisotropy probe of the origin of the cosmic gamma-ray background , 2006, astro-ph/0612467.

[43]  S. Heinemeyer,et al.  The masses of the neutral , 1999 .

[44]  S. Heinemeyer,et al.  The masses of the neutral ${\cal CP}$-even Higgs bosons in the MSSM: Accurate analysis at the two-loop level , 1998, hep-ph/9812472.

[45]  Relic abundance of dark matter in the minimal universal extra dimension model , 2006, hep-ph/0605280.

[46]  Earth-mass dark-matter haloes as the first structures in the early Universe , 2005, Nature.

[47]  P. Gondolo,et al.  Neutralino relic density including coannihilations , 1997 .

[48]  W. M. Wood-Vasey,et al.  Improved Cosmological Constraints from New, Old, and Combined Supernova Data Sets , 2008, 0804.4142.

[49]  Dark matter from late decays and the small-scale structure problems , 2006, hep-ph/0701007.

[50]  K. Griest,et al.  Supersymmetric dark matter , 1992 .

[51]  Howard E. Haber,et al.  The Search for Supersymmetry: Probing Physics Beyond the Standard Model , 1985 .

[52]  Damping scales of neutralino cold dark matter , 2001, astro-ph/0104173.

[53]  F. Gianotti,et al.  Updated post-WMAP benchmarks for supersymmetry , 2003, hep-ph/0306219.

[54]  A. Green,et al.  The first WIMPy halos , 2005, astro-ph/0503387.

[55]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[56]  Jonathan L. Feng,et al.  Superweakly interacting massive particle solutions to small scale structure problems. , 2005, Physical review letters.

[57]  Thermal decoupling of WIMPs from first principles , 2007 .

[58]  Large-amplitude isothermal fluctuations and high-density dark-matter clumps. , 1994, Physical review. D, Particles and fields.

[59]  E. Branchini,et al.  Dark matter annihilation in substructures revised , 2007, 0706.2101.

[60]  V. Berezinsky,et al.  Remnants of dark matter clumps , 2007, 0712.3499.

[61]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE * OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.