Parasitic-Insensitive Linearization Methods for 60-GHz 90-nm CMOS LNAs

Two V-band low-noise amplifiers (LNAs) with excellent linearity and noise figure (NF) using 90-nm CMOS technology are demonstrated in this paper, employing parasitic-insensitive linearization topologies, i.e., cascode and common source, for comparative purposes. To improve the linearity without deteriorating the NF, the 54-69-GHz cascode LNA is linearized by the body-biased post-distortion, and the 58-65-GHz common-source LNA is linearized by the distributed derivative superposition. Using these parasitic-insensitive linearization methods at millimeter-wave frequency, the cascode LNA can achieve an IIP3 of 11 dBm and an NF of 3.78 dB at 68.5 GHz with a gain of 13.2 dB and 14.4-mW dc power. The common-source LNA has an IIP3 of 0 dBm and an NF of 4.1 dB at 64.5 GHz with a gain of 11.3 dB and 10.8-mW dc power. To the best of our knowledge, the proposed cascode LNA has up to 11-dBm IIP3 performance and the highest figure-of-merit of 156.2, among all reported V-band LNAs.

[1]  P. Schvan,et al.  Algorithmic Design of CMOS LNAs and PAs for 60-GHz Radio , 2007, IEEE Journal of Solid-State Circuits.

[2]  Ru Huang,et al.  A 0.4-V Low Noise Amplifier Using Forward Body Bias Technology for 5 GHz Application , 2007, IEEE Microwave and Wireless Components Letters.

[4]  Calvin Plett,et al.  A V-band 90-nm CMOS low-noise amplifier with modified CPW transmission lines for UWB systems , 2010 .

[5]  Huei Wang,et al.  Millimeter-Wave Low Power and Miniature CMOS Multicascode Low-Noise Amplifiers with Noise Reduction Topology , 2009, IEEE Transactions on Microwave Theory and Techniques.

[6]  Ibrahim Haroun,et al.  Multi-band 700MHz/ 2.4GHz/ 60GHz RF front-end for radio-over-fiber base stations , 2010, 2010 IEEE Radio and Wireless Symposium (RWS).

[7]  Calvin Plett,et al.  A V-band 90-nm CMOS low-noise amplifier with modified CPW transmission lines for UWB systems , 2010, 2010 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF).

[8]  Tzuen-Hsi Huang,et al.  Low-Power, High-Gain V-Band CMOS Low Noise Amplifier for Microwave Radiometer Applications , 2011, IEEE Microwave and Wireless Components Letters.

[9]  Vladimir Aparin,et al.  A cellular-band CDMA 0.25-/spl mu/m CMOS LNA linearized using active post-distortion , 2005, IEEE Journal of Solid-State Circuits.

[10]  Hong-Yu Yang,et al.  A low-power V-band CMOS low-noise amplifier using current-sharing technique , 2008 .

[11]  Tae-Sung Kim,et al.  Post-linearization of cascode CMOS low noise amplifier using folded PMOS IMD sinker , 2006, IEEE Microwave and Wireless Components Letters.

[12]  L. Larson,et al.  Modified derivative superposition method for linearizing FET low-noise amplifiers , 2004, IEEE Transactions on Microwave Theory and Techniques.

[13]  Byung-Sung Kim,et al.  Linearization of differential CMOS low noise amplifier using cross-coupled post distortion canceller , 2008, 2008 IEEE Radio Frequency Integrated Circuits Symposium.

[14]  Edwin van der Heijden,et al.  Complete On-Wafer Noise-Figure Characterization of 60-GHz Differential Amplifiers , 2010, IEEE Transactions on Microwave Theory and Techniques.

[15]  Ahmed Amer,et al.  A Low-Power Wideband CMOS LNA for WiMAX , 2007, IEEE Transactions on Circuits and Systems II: Express Briefs.

[16]  Huei Wang,et al.  Analysis and Design of Millimeter-Wave Low-Power CMOS LNA With Transformer-Multicascode Topology , 2011, IEEE Transactions on Microwave Theory and Techniques.

[17]  Heng Zhang,et al.  A Low-Power, Linearized, Ultra-Wideband LNA Design Technique , 2009, IEEE Journal of Solid-State Circuits.

[18]  Jeng-Han Tsai,et al.  A 24-GHz 3.8-dB NF low-noise amplifier with built-in linearizer , 2010, 2010 Asia-Pacific Microwave Conference.

[19]  Hayashi,et al.  A mesh-arrayed MOSFET (MA-MOS) for high-frequency analog applications , 1997, 1997 Symposium on VLSI Technology.

[20]  E. Sánchez-Sinencio,et al.  A Highly Linear Low-Noise Amplifier , 2006, IEEE Transactions on Microwave Theory and Techniques.

[21]  A. H. M. van Roermund,et al.  Analysis and Design of a 60 GHz Wideband Voltage-Voltage Transformer Feedback LNA , 2012, IEEE Transactions on Microwave Theory and Techniques.

[22]  Y.-S. Lin,et al.  0.99 mW 3-10 GHz common-gate CMOS UWB LNA using T-match input network and self-body-bias technique , 2011 .

[23]  M. Tentzeris,et al.  A dual-band unidirectional coplanar antenna for 2.4–5-GHz wireless applications , 2008, 2008 Asia-Pacific Microwave Conference.

[24]  Heng Zhang,et al.  A Noise Reduction and Linearity Improvement Technique for a Differential Cascode LNA , 2008, IEEE Journal of Solid-State Circuits.

[25]  H. Samavati,et al.  5-GHz CMOS wireless LANs , 2002 .

[26]  H.R. Rategh,et al.  A 5-GHz CMOS wireless LAN receiver front end , 2000, IEEE Journal of Solid-State Circuits.

[27]  Gary Brown,et al.  Linearization of CMOS LNA's via optimum gate biasing , 2004, 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512).

[28]  M. Zargari,et al.  A single-chip dual-band tri-mode CMOS transceiver for IEEE 802.11a/b/g wireless LAN , 2004, IEEE Journal of Solid-State Circuits.

[29]  D. Ritter,et al.  An ultra low power LNA with 15dB gain and 4.4db NF in 90nm CMOS process for 60 GHz phase array radio , 2008, 2008 IEEE Radio Frequency Integrated Circuits Symposium.

[30]  Zuo-Min Tsai,et al.  A 10.8-GHz CMOS Low-Noise Amplifier Using Parallel-Resonant Inductor , 2007, 2007 IEEE/MTT-S International Microwave Symposium.

[31]  Hong-Yu Yang,et al.  A low-power V-band CMOS low-noise amplifier using current-sharing technique , 2008, 2008 IEEE International Symposium on Circuits and Systems.

[32]  Mingyan Yu,et al.  Post linearization of CMOS LNA using double cascade FETs , 2006, 2006 IEEE International Symposium on Circuits and Systems.