A simple and robust thinning algorithm on cell complexes

Thinning is a commonly used approach for computing skeleton descriptors. Traditional thinning algorithms often have a simple, iterative structure, yet producing skeletons that are overly sensitive to boundary perturbations. We present a novel thinning algorithm, operating on objects represented as cell complexes, that preserves the simplicity of typical thinning algorithms but generates skeletons that more robustly capture global shape features. Our key insight is formulating a skeleton significance measure, called medial persistence, which identify skeleton geometry at various dimensions (e.g., curves or surfaces) that represent object parts with different anisotropic elongations (e.g., tubes or plates). The measure is generally defined in any dimensions, and can be easily computed using a single thinning pass. Guided by medial persistence, our algorithm produces a family of topology and shape preserving skeletons whose shape and composition can be flexible controlled by desired level of medial persistence.

[1]  Tamal K. Dey,et al.  Defining and computing curve-skeletons with medial geodesic function , 2006, SGP '06.

[2]  Kálmán Palágyi,et al.  A 3D fully parallel surface-thinning algorithm , 2008, Theor. Comput. Sci..

[3]  PalágyiKálmán A 3D fully parallel surface-thinning algorithm , 2008 .

[4]  Gabriella Sanniti di Baja,et al.  Computing skeletons in three dimensions , 1999, Pattern Recognit..

[5]  Kaleem Siddiqi,et al.  Hamilton-Jacobi Skeletons , 2002, International Journal of Computer Vision.

[6]  Deborah Silver,et al.  Curve-Skeleton Properties, Applications, and Algorithms , 2007, IEEE Trans. Vis. Comput. Graph..

[7]  Olaf Kübler,et al.  Hierarchic Voronoi skeletons , 1995, Pattern Recognit..

[8]  Sunghee Choi,et al.  The power crust , 2001, SMA '01.

[9]  Matthew L. Baker,et al.  Computing a family of skeletons of volumetric models for shape description , 2007, Comput. Aided Des..

[10]  Vladimir Kovalevsky,et al.  Algorithms in Digital Geometry Based on Cellular Topology , 2004, IWCIA.

[11]  Jen-Hui Chuang,et al.  Skeletonization of Three-Dimensional Object Using Generalized Potential Field , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Kaleem Siddiqi,et al.  Flux invariants for shape , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[13]  Tao Ju Robust repair of polygonal models , 2004, SIGGRAPH 2004.

[14]  Gilles Bertrand,et al.  Simple points, topological numbers and geodesic neighborhoods in cubic grids , 1994, Pattern Recognit. Lett..

[15]  Dinesh Manocha,et al.  Homotopy-preserving medial axis simplification , 2005, SPM '05.

[16]  Ching Y. Suen,et al.  Thinning Methodologies - A Comprehensive Survey , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Shi-Min Hu,et al.  Topology Repair of Solid Models Using Skeletons , 2007, IEEE Transactions on Visualization and Computer Graphics.

[18]  Gabriella Sanniti di Baja,et al.  On Medial Representations , 2008, CIARP.

[19]  Alfred M. Bruckstein,et al.  Pruning Medial Axes , 1998, Comput. Vis. Image Underst..

[20]  Tamal K. Dey,et al.  Approximate medial axis as a voronoi subcomplex , 2002, SMA '02.

[21]  Tao Ju,et al.  Robust repair of polygonal models , 2004, ACM Trans. Graph..

[22]  Alexandru Telea,et al.  Computing Multiscale Curve and Surface Skeletons of Genus 0 Shapes Using a Global Importance Measure , 2008, IEEE Transactions on Visualization and Computer Graphics.

[23]  Longin Jan Latecki,et al.  Digital Topology , 1994 .

[24]  Shi-Min Hu,et al.  Editing the topology of 3D models by sketching , 2007, ACM Trans. Graph..

[25]  Gilles Bertrand,et al.  A parallel thinning algorithm for medial surfaces , 1995, Pattern Recognit. Lett..

[26]  Attila Kuba,et al.  A Parallel 3D 12-Subiteration Thinning Algorithm , 1999, Graph. Model. Image Process..

[27]  Azriel Rosenfeld,et al.  Digital topology: Introduction and survey , 1989, Comput. Vis. Graph. Image Process..

[28]  Matthew L. Baker,et al.  Computing a Family of Skeletons of Volumetric Models for Shape Description , 2006, GMP.

[29]  Guido Brunnett,et al.  Fast Force Field Approximation and its Application to Skeletonization of Discrete 3D Objects , 2008, Comput. Graph. Forum.

[30]  Petra Wiederhold,et al.  Thinning on Quadratic, Triangular, and Hexagonal Cell Complexes , 2008, IWCIA.

[31]  Tamal K. Dey,et al.  Approximate medial axis as a voronoi subcomplex , 2002, SMA '02.