On the $\mathbb{A}^1$-invariance of $\mathrm{K}_2$ modeled on linear and even orthogonal groups

. Let k be an arbitrary field. In this paper we show that in the linear case ( Φ = A (cid:96) , (cid:96) ≥ 4 ) and even orthogonal case ( Φ = D (cid:96) , (cid:96) ≥ 7 , char( k ) (cid:54) = 2 ) the unstable functor K 2 (Φ , − ) possesses the A 1 invariance property in the geometric case, i. e. K 2 (Φ , R [ t ]) = K 2 (Φ , R ) for a regular ring R containing k . As a consequence, the unstable K 2 groups can be represented in the unstable A 1 -homotopy category H • ( k ) as fundamental groups of the simply-connected Chevalley–Demazure group schemes G(Φ , − ) . Our invariance result can be considered as the K 2 -analogue of the geometric case of Bass–Quillen conjecture. We also show for a semilocal regular k -algebra A that K 2 (Φ , A ) embeds as a subgroup into K M2 (Frac A ) .

[1]  A. Stavrova A1-invariance of non-stable K1-functors in the equicharacteristic case , 2019, 1912.05424.

[2]  N. Vavilov,et al.  Commutators of relative and unrelative elementary subgroups in Chevalley groups , 2020, 2003.07230.

[3]  S. Sinchuk,et al.  A Horrocks-type theorem for even orthogonal $K_2$. , 2019, 1909.02637.

[4]  I. Panin Nice triples and the Grothendieck–Serre conjecture concerning principal G-bundles over reductive group schemes , 2017, Duke Mathematical Journal.

[5]  David Schwein,et al.  Étale Cohomology , 2018, Translations of Mathematical Monographs.

[6]  A. Asok,et al.  Affine representability results in A^1-homotopy theory III: finite fields and complements , 2018, 1807.03365.

[7]  A. Asok,et al.  Affine representability results in 1–homotopy theory, II : Principal bundles and homogeneous spaces , 2015, 1507.08020.

[8]  S. Sinchuk,et al.  On centrality of even orthogonal K2 , 2016, 1606.00272.

[9]  Robert Steinberg,et al.  Lectures on Chevalley Groups , 2016 .

[10]  S. Sinchuk On centrality of K2 for Chevalley groups of type Eℓ , 2015, 1502.02463.

[11]  Matthias Wendt,et al.  On A1-fundamental groups of isotropic reductive groups , 2012, 1207.2364.

[12]  A. Asok,et al.  Affine representability results in A-homotopy theory I: vector bundles , 2016 .

[13]  C. Weibel,et al.  The K-Book: An Introduction to Algebraic K-Theory , 2013 .

[14]  Matthias Wendt On homotopy invariance for homology of rank two groups , 2012 .

[15]  A. Stavrova Homotopy invariance of non-stable K_1-functors , 2011, 1111.4664.

[16]  T. Lam Serre's Problem on Projective Modules , 2006 .

[17]  J. Hornbostel A 1 -representability of hermitian K-theory and Witt groups , 2005 .

[18]  I. Panin THE EQUI-CHARACTERISTIC CASE OF THE GERSTEN CONJECTURE , 2000 .

[19]  Vladimir Voevodsky,et al.  A1-homotopy theory of schemes , 1999 .

[20]  S. M. Bhatwadekar Projective Modules Over Polynomial Rings , 1999 .

[21]  Jon P. May Simplicial objects in algebraic topology , 1993 .

[22]  J. Colliot-Thélène,et al.  Espaces principaux homogènes localement triviaux , 1992 .

[23]  Dorin Popescu,et al.  General Néron desingularization , 1985, Nagoya Mathematical Journal.

[24]  J. Jardine On the homotopy groups of algebraic groups , 1983 .

[25]  M. S. Tulenbaev THE STEINBERG GROUP OF A POLYNOMIAL RING , 1983 .

[26]  E. Abe Whitehead groups of chevalley groups over polynomial rings , 1983 .

[27]  A. Suslin Stability in algebraic K-theory , 1982 .

[28]  M. S. Tulenbaev,et al.  Stabilization theorem for the Milnor K2-functor , 1981 .

[29]  H. Lindel On the Bass-Quillen conjecture concerning projective modules over polynomial rings , 1981 .

[30]  J. Milne Etale Cohomology (PMS-33) , 1980 .

[31]  M. R. Stein Stability theorems for K1, K2 and related functors modeled on Chevalley groups , 1978 .

[32]  Wilberd van der Kallen,et al.  The $K_2$ of rings with many units , 1977 .

[33]  H. Inasaridze HOMOTOPY OF PSEUDOSIMPLICIAL GROUPS, NONABELIAN DERIVED FUNCTORS, AND ALGEBRAIC K-THEORY , 1975 .

[34]  M. R. Stein GENERATORS, RELATIONS AND COVERINGS OF CHEVALLEY GROUPS OVER COMMUTATIVE RINGS. , 1971 .

[35]  Hideya Matsumoto,et al.  Sur les sous-groupes arithm'etiques des groupes semi-simples d'eploy'es , 1969 .