Boolean Circuits Versus Arithmetic Circuits

Abstract We compare the two computational models of Boolean circuits and arithmetic circuits in cases where they both apply, namely the computation of polynomials over the rational numbers or over finite fields. Over Q and finite fields, Boolean circuits can simulate arithmetic circuits efficiently with respect to size. Over finite fields of small characteristic, the two models are equally powerful when size is considered, but Boolean circuits are exponentially more powerful than arithmetic circuits with respect to depth. Most of the technical results given in this synopis are taken from the literature.

[1]  Rudolf Lide,et al.  Finite fields , 1983 .

[2]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[3]  K. Mulmuley A fast parallel algorithm to compute the rank of a matrix over an arbitrary field , 1987, Comb..

[4]  Volker Strassen,et al.  The Computational Complexity of Continued Fractions , 1983, SIAM J. Comput..

[5]  Ketan Mulmuley,et al.  A fast parallel algorithm to compute the rank of a matrix over an arbitrary field , 1986, STOC '86.

[6]  Wayne Eberly Very Fast Parallel Polynomial Arithmetic , 1989, SIAM J. Comput..

[7]  Joachim von zur Gathen,et al.  Irreducibility of Multivariate Polynomials , 1985, J. Comput. Syst. Sci..

[8]  Walter L. Ruzzo On Uniform Circuit Complexity , 1981, J. Comput. Syst. Sci..

[9]  Joachim von zur Gathen,et al.  Inversion in Finite Fields Using Logarithmic Depth , 1990, J. Symb. Comput..

[10]  Abraham Lempel,et al.  On the power of straight- line computations in finite fields , 1982, IEEE Trans. Inf. Theory.

[11]  Gary L. Miller,et al.  Efficient Parallel Evaluation of Straight-Line Code and Arithmetic Circuits , 1988, SIAM J. Comput..

[12]  Denis Thérien,et al.  Finite monoids and the fine structure of NC1 , 1987, STOC.

[13]  Allan Borodin,et al.  Fast parallel matrix and GCD computations , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[14]  Stephen A. Cook,et al.  Log Depth Circuits for Division and Related Problems , 1984, SIAM J. Comput..

[15]  Joachim von zur Gathen Parallel algorithms for algebraic problems , 1983, STOC '83.

[16]  K. Ramachandra,et al.  Vermeidung von Divisionen. , 1973 .

[17]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[18]  Walter L. Ruzzo On Uniform Circuit Complexity (Extended Abstract) , 1979, FOCS 1979.

[19]  Leonard M. Adleman,et al.  Two theorems on random polynomial time , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[20]  Leslie G. Valiant,et al.  Completeness classes in algebra , 1979, STOC.

[21]  Hermann Jung,et al.  Depth efficient transformations of arithmetic into Boolean circuits , 1985, FCT.

[22]  Adi Shamir,et al.  Factoring Numbers in O(log n) Arithmetic Steps , 1979, Inf. Process. Lett..

[23]  Volker Strassen,et al.  The computational complexity of continued fractions , 1981, SYMSAC '81.

[24]  Joachim von zur Gathen Computing Powers in Parallel , 1987, SIAM J. Comput..

[25]  Joachim von zur Gathen,et al.  Parallel algorithms for algebraic problems , 1983, SIAM J. Comput..

[26]  Leslie G. Valiant,et al.  Fast Parallel Computation of Polynomials Using Few Processors , 1983, SIAM J. Comput..

[27]  Stephen A. Cook,et al.  A Taxonomy of Problems with Fast Parallel Algorithms , 1985, Inf. Control..

[28]  Joachim von zur Gathen,et al.  Parallel Arithmetic Computations: A Survey , 1986, MFCS.

[29]  Bruce E. Litow,et al.  O(log(n)) Parallel Time Finite Field Inversion , 1988, AWOC.