Effects of compatibility of polymer binders with solvate ionic liquid electrolytes on discharge and charge reactions of lithium-sulfur batteries

[1]  Kristina Edström,et al.  A stable graphite negative electrode for the lithium-sulfur battery. , 2015, Chemical communications.

[2]  M. Watanabe,et al.  Li+ Ion Transport in Polymer Electrolytes Based on a Glyme-Li Salt Solvate Ionic Liquid , 2015 .

[3]  D. Brandell,et al.  Functional binders as graphite exfoliation suppressants in aggressive electrolytes for lithium-ion batteries , 2015 .

[4]  R. Atkin,et al.  Structural and aggregate analyses of (Li salt + glyme) mixtures: the complex nature of solvate ionic liquids. , 2015, Physical chemistry chemical physics : PCCP.

[5]  D. Aurbach,et al.  Review on Li‐Sulfur Battery Systems: an Integral Perspective , 2015 .

[6]  Wu Xu,et al.  Anodes for Rechargeable Lithium‐Sulfur Batteries , 2015 .

[7]  Shiguo Zhang,et al.  Recent Advances in Electrolytes for Lithium–Sulfur Batteries , 2015 .

[8]  R. Tatara,et al.  Li(+) solvation in glyme-Li salt solvate ionic liquids. , 2015, Physical chemistry chemical physics : PCCP.

[9]  S. Seki,et al.  Solvent Activity in Electrolyte Solutions Controls Electrochemical Reactions in Li-Ion and Li-Sulfur Batteries , 2015 .

[10]  M. Ishikawa,et al.  Electrochemical properties of non-nano-silicon negative electrodes prepared with a polyimide binder , 2015 .

[11]  Anthony F. Hollenkamp,et al.  Lithium–sulfur batteries—the solution is in the electrolyte, but is the electrolyte a solution? , 2014 .

[12]  K. Edström,et al.  Porosity Blocking in Highly Porous Carbon Black by PVdF Binder and Its Implications for the Li–S System , 2014 .

[13]  K. Edström,et al.  Functional, water-soluble binders for improved capacity and stability of lithium–sulfur batteries , 2014 .

[14]  H. Moon,et al.  Mechanism of Li Ion Desolvation at the Interface of Graphite Electrode and Glyme–Li Salt Solvate Ionic Liquids , 2014 .

[15]  M. Watanabe,et al.  Chelate Effects in Glyme/Lithium Bis(trifluoromethanesulfonyl)amide Solvate Ionic Liquids, Part 2: Importance of Solvate-Structure Stability for Electrolytes of Lithium Batteries , 2014 .

[16]  Patrik Johansson,et al.  A review of electrolytes for lithium–sulphur batteries , 2014 .

[17]  H. Moon,et al.  Chelate effects in glyme/lithium bis(trifluoromethanesulfonyl)amide solvate ionic liquids. I. Stability of solvate cations and correlation with electrolyte properties. , 2014, The journal of physical chemistry. B.

[18]  Linda F. Nazar,et al.  Lithium-sulfur batteries , 2014 .

[19]  M. Watanabe,et al.  Criteria for solvate ionic liquids. , 2014, Physical chemistry chemical physics : PCCP.

[20]  H. Oji,et al.  Phosphorus Electrodes in Sodium Cells: Small Volume Expansion by Sodiation and the Surface‐Stabilization Mechanism in Aprotic Solvent , 2014 .

[21]  Oleg Borodin,et al.  Solvate structures and spectroscopic characterization of LiTFSI electrolytes. , 2013, The journal of physical chemistry. B.

[22]  Li-Jun Wan,et al.  Lithium-sulfur batteries: electrochemistry, materials, and prospects. , 2013, Angewandte Chemie.

[23]  Kaoru Dokko,et al.  Ionic Liquid Electrolytes for Lithium–Sulfur Batteries , 2013 .

[24]  Kaoru Dokko,et al.  Anionic Effects on Solvate Ionic Liquid Electrolytes in Rechargeable Lithium–Sulfur Batteries , 2013 .

[25]  K. Edström,et al.  Why PEO as a binder or polymer coating increases capacity in the Li-S system. , 2013, Chemical communications.

[26]  A. Manthiram,et al.  Challenges and prospects of lithium-sulfur batteries. , 2013, Accounts of chemical research.

[27]  L. Nazar,et al.  New approaches for high energy density lithium-sulfur battery cathodes. , 2013, Accounts of chemical research.

[28]  Guangyuan Zheng,et al.  Nanostructured sulfur cathodes. , 2013, Chemical Society reviews.

[29]  Nancy J. Dudney,et al.  Phosphorous Pentasulfide as a Novel Additive for High‐Performance Lithium‐Sulfur Batteries , 2013 .

[30]  M. Watanabe,et al.  Solvent Effect of Room Temperature Ionic Liquids on Electrochemical Reactions in Lithium–Sulfur Batteries , 2013 .

[31]  Shiro Seki,et al.  Solvate Ionic Liquid Electrolyte for Li–S Batteries , 2013 .

[32]  S. Komaba,et al.  High-capacity Si–graphite composite electrodes with a self-formed porous structure by a partially neutralized polyacrylate for Li-ion batteries , 2012 .

[33]  M. Watanabe,et al.  Glyme-lithium salt equimolar molten mixtures: concentrated solutions or solvate ionic liquids? , 2012, The journal of physical chemistry. B.

[34]  Wataru Murata,et al.  Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell , 2012 .

[35]  S. Komaba,et al.  Comparative Study of Sodium Polyacrylate and Poly(vinylidene fluoride) as Binders for High Capacity Si–Graphite Composite Negative Electrodes in Li-Ion Batteries , 2012 .

[36]  Shengbo Zhang Binder Based on Polyelectrolyte for High Capacity Density Lithium/Sulfur Battery , 2012 .

[37]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[38]  S. Seki,et al.  Oxidative-stability enhancement and charge transport mechanism in glyme-lithium salt equimolar complexes. , 2011, Journal of the American Chemical Society.

[39]  M. Watanabe,et al.  Reversibility of electrochemical reactions of sulfur supported on inverse opal carbon in glyme-Li salt molten complex electrolytes. , 2011, Chemical communications.

[40]  M. Watanabe,et al.  Physicochemical Properties of Glyme–Li Salt Complexes as a New Family of Room-temperature Ionic Liquids , 2010 .

[41]  Doron Aurbach,et al.  On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li–Sulfur Batteries , 2009 .

[42]  L. Nazar,et al.  A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. , 2009, Nature materials.

[43]  Ryota Watanabe,et al.  All solid-state battery with sulfur electrode and thio-LISICON electrolyte , 2008 .

[44]  K. W. Kim,et al.  Electrochemical properties of lithium sulfur cells using PEO polymer electrolytes prepared under three different mixing conditions , 2007 .

[45]  Jing Li,et al.  Sodium Carboxymethyl Cellulose A Potential Binder for Si Negative Electrodes for Li-Ion Batteries , 2007 .

[46]  W. Henderson,et al.  Glyme-lithium salt phase behavior. , 2006, The journal of physical chemistry. B.

[47]  Jinkui Feng,et al.  Improved dischargeability and reversibility of sulfur cathode in a novel ionic liquid electrolyte , 2006 .

[48]  Jou-Hyeon Ahn,et al.  Discharge process of Li/PVdF/S cells at room temperature , 2006 .

[49]  W. Henderson,et al.  Glyme−Lithium Bis(trifluoromethanesulfonyl)imide and Glyme−Lithium Bis(perfluoroethanesulfonyl)imide Phase Behavior and Solvate Structures , 2005 .

[50]  Yuriy V. Mikhaylik,et al.  Polysulfide Shuttle Study in the Li/S Battery System , 2004 .

[51]  W. Henderson,et al.  Complexes of Lithium Imide Salts with Tetraglyme and Their Polyelectrolyte Composite Materials , 2004 .

[52]  W. Henderson,et al.  Tetraglyme−Li+ Cation Solvate Structures: Models for Amorphous Concentrated Liquid and Polymer Electrolytes (II) , 2003 .

[53]  Fuminori Mizuno,et al.  All-solid-state Li/S batteries with highly conductive glass–ceramic electrolytes , 2003 .

[54]  N. Taylor,et al.  Stable solvates in solution of lithium bis(trifluoromethylsulfone)imide in glymes and other aprotic solvents: Phase diagrams, crystallography and Raman spectroscopy , 2002 .

[55]  Nansheng Xu,et al.  Sulfur-carbon nano-composite as cathode for rechargeable lithium battery based on gel electrolyte , 2002 .

[56]  K. Striebel,et al.  Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes , 2000 .

[57]  Michel Armand,et al.  Polymer solid electrolytes - an overview , 1983 .

[58]  K. Abraham,et al.  A Lithium/Dissolved Sulfur Battery with an Organic Electrolyte , 1979 .