Generalized pattern extraction from concept lattices

In this paper, we show how the existence of taxonomies on objects and/or attributes can be used in Formal Concept Analysis to help discover generalized concepts. To that end, we analyze three generalization cases ( ∃, ∀, and α) and present different scenarios of a simultaneous generalization on both objects and attributes. We also discuss the cardinality of the generalized pattern set against the number of simple patterns produced from the initial data set.

[1]  Otto Opitz,et al.  Information and Classification , 1993 .

[2]  Rudolf Wille Preconcept Algebras and Generalized Double Boolean Algebras , 2004, ICFCA.

[3]  Bernhard Ganter,et al.  Pattern Structures and Their Projections , 2001, ICCS.

[4]  Ramakrishnan Srikant,et al.  Mining generalized association rules , 1995, Future Gener. Comput. Syst..

[5]  Georgios C. Anagnostopoulos,et al.  Knowledge-Based Intelligent Information and Engineering Systems , 2003, Lecture Notes in Computer Science.

[6]  A. Asuncion,et al.  UCI Machine Learning Repository, University of California, Irvine, School of Information and Computer Sciences , 2007 .

[7]  Henry Soldano,et al.  Alpha Galois Lattices: An Overview , 2005, ICFCA.

[8]  Rokia Missaoui,et al.  Using Taxonomies on Objects and Attributes to Discover Generalized Patterns , 2012, CLA.

[9]  Keqing He,et al.  Towards Representing FCA-based Ontologies in Semantic Web Rule Language , 2006, The Sixth IEEE International Conference on Computer and Information Technology (CIT'06).

[10]  Bernhard Ganter,et al.  Formal Concept Analysis: Mathematical Foundations , 1998 .

[11]  Olivier Ridoux,et al.  A Logical Generalization of Formal Concept Analysis , 2000, ICCS.

[12]  Marcel Erné,et al.  Distributive laws for concept lattices , 1993 .

[13]  Vincent Duquenne Lattice Drawings and Morphisms , 2010, ICFCA.

[14]  Gerd Stumme,et al.  FCA-MERGE: Bottom-Up Merging of Ontologies , 2001, IJCAI.

[15]  Anna Formica,et al.  Ontology-based concept similarity in Formal Concept Analysis , 2006, Inf. Sci..

[16]  Gerd Stumme,et al.  Conceptual on-line analytical processing , 2000 .

[17]  Hele-Mai Haav,et al.  A Semi-automatic Method to Ontology Design by Using FCA , 2004, CLA.

[18]  Gerd Stumme,et al.  Computing iceberg concept lattices with T , 2002, Data Knowl. Eng..

[19]  Vilém Vychodil,et al.  Adding background knowledge to formal concept analysis via attribute dependency formulas , 2008, SAC '08.

[20]  Lakhmi C. Jain,et al.  Knowledge-Based Intelligent Information and Engineering Systems , 2004, Lecture Notes in Computer Science.

[21]  Tianyuan Xiao,et al.  An Automatic Method for Ontology Mapping , 2007, KES.

[22]  Claude Berge,et al.  Graphs and Hypergraphs , 2021, Clustering.

[23]  O. Ridoux,et al.  Introduction to logical information systems , 2004, Inf. Process. Manag..

[24]  Frank Vogt,et al.  Conceptual Data Systems , 1993 .

[25]  Amedeo Napoli,et al.  Mining gene expression data with pattern structures in formal concept analysis , 2011, Inf. Sci..

[26]  Rokia Missaoui,et al.  Mining Generalized Patterns from Large Databases using Ontologies , 2009, ArXiv.

[27]  Jean Sallantin,et al.  Structural Machine Learning with Galois Lattice and Graphs , 1998, ICML.

[28]  Nathalie Pernelle,et al.  ZooM: a nested Galois lattices-based system for conceptual clustering , 2002, J. Exp. Theor. Artif. Intell..

[29]  Chabane Djeraba,et al.  Toward Recommendation Based on Ontology-Powered Web-Usage Mining , 2007, IEEE Internet Computing.

[30]  Bernhard Ganter,et al.  Attribute Exploration with Background Knowledge , 1999, Theor. Comput. Sci..

[31]  Sergei O. Kuznetsov,et al.  Learning of Simple Conceptual Graphs from Positive and Negative Examples , 1999, PKDD.

[32]  Rokia Missaoui,et al.  Restrictions on Concept Lattices for Pattern Management , 2010, CLA.

[33]  Olivier Curé,et al.  An FCA-based solution for ontology mediation , 2008, ONISW '08.

[34]  Andreas Hotho,et al.  Conceptual Knowledge Processing with Formal Concept Analysis and Ontologies , 2004, ICFCA.