Nanomechanical properties of mechanical double-layers: a novel semiempirical analysis.

Force-displacement curves have been acquired with a commercial atomic force microscope on a thin film of poly(n-butyl methacrylate) on glass substrates. The film thickness is nonuniform, ranging in the measured area from 0 to 30 nm, and gives the possibility to survey the so-called "mechanical double-layer" topic, i.e., the influence of the substrate on the mechanical properties of the film in dependence of the film thickness. The stiffness and the deformation for each force-distance curve were determined and related to the film thickness. We were able to estimate the resolution of the film thickness that can be achieved by means of force-distance curves. By exploiting the data acquired in the present and in a previous experiment, a novel semiempirical approach to describe the mechanical properties of a mechanical double-layer is introduced. The mathematical model, with which deformation-force curves can be described, permits to calculate the Young's moduli of film and substrate in agreement with literature values and to determine the film thickness in agreement with the topography.