Aerodynamic Design of Turbomachinery Cascades Using an Enhanced Time-Marching Finite Volume Method

The paper presents an aerodynamic design method for turbomachinery cascades of blades. The prescribed conditions are the aerodynamic blade load and the blade thickness distributions. An iterative procedure was implemented, based on the solution of the Euler equations, to seek the blade geometry that provides the specified design conditions. A central finite-volume explicit time-marching scheme is used to solve the Euler equations in two-dimensional flow. The numerical scheme uses an adaptive nonlinear artificial dissipation term based on the limiter theory. Starting with the results from the flow analysis through an initially guessed cascade geometry, the design code modifies the blade camber line by relating the axial distribution of the mean tangential velocity component through the cascade with the blade camber-line angle. The procedure allows the iterative calculation of the blade geometry that gives the desired aerodynamic blade load distribution. The accuracy of the method has been verified by calculating a parabolic cascade and by redesigning a transonic compressor cascade. keyword: inverse method, time-marching, finite volume.

[1]  L. Gato,et al.  A multi-dimensional upwind matrix distribution scheme for conservative laws , 2004 .

[2]  José C. Páscoa,et al.  An Inverse Method For TurbomachineryCascades Of Blades – Investigation Of TheExistence And Uniqueness Of Solution , 2004 .

[3]  José C. Páscoa,et al.  An Efficient Finite Volume Scheme With Improved Artificial Viscosity Suitable For Transonic-flow Calculations , 2002 .

[4]  Wei Shyy,et al.  Optimization of a low Reynolds number airfoil with flexible membrane , 2001 .

[5]  M. Kawahara,et al.  Shape Optimization of Body Located in Incompressible Navier--Stokes Flow Based on Optimal Control Theory , 2000 .

[6]  Klaus-Jürgen Bathe,et al.  On finite element analysis of fluid flows fully coupled with structural interactions , 1999 .

[7]  Reinhard Mönig,et al.  Development of Advanced Compressor Airfoils for Heavy-Duty Gas Turbines: Part I — Design and Optimization , 1999 .

[8]  Wahid Ghaly,et al.  Aerodynamic inverse design of turbomachinery cascades using a finite volume method on unstructured meshes , 1998 .

[9]  S. Atluri,et al.  A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics , 1998 .

[10]  Stephane Pierret,et al.  Turbomachinery Blade Design Using a Navier–Stokes Solver and Artificial Neural Network , 1998 .

[11]  R Van den Braembussche,et al.  A two-dimensional Navier—Stokes inverse solver for compressor and turbine blade design , 1997 .

[12]  R. A. Van den Braembussche,et al.  Three-Dimensional Inverse Method for Turbomachinery Blading Design , 1996 .

[13]  L. Gato,et al.  Iterative use of a time-marching code for designing turbomachine blade rows , 1996 .

[14]  Eli Turkel,et al.  Central difference TVD schemes for time dependent and steady state problems , 1993 .

[15]  Olivier Léonard Conception et développement d'une méthode inverse de type Euler et application à la génération de grilles d'aubes transsoniques , 1992 .

[16]  G. Volpe,et al.  Role of constraints in inverse design for transonic airfoils , 1984 .

[17]  R. Lewis,et al.  A Method for Inverse Aerofoil and Cascade Design by Surface Vorticity , 1982 .

[18]  Ste´phane Burguburu,et al.  Numerical Optimization of Turbomachinery Bladings , 2003 .

[19]  Thong Q Dang,et al.  Inverse method for turbomachine blades using shock-capturing techniques , 1995 .