Demonstration of high optical sensitivity in far-infrared hot-electron bolometer

We report on the measurement of a very low noise equivalent power of 3×10−19 W/Hz1/2 at 620 GHz in a superconducting antenna-coupled hot-electron bolometer. The sensing element is a micron-size titanium transition-edge sensor with NbTiN superconducting contacts fabricated on a sapphire substrate. The high sensitivity is due to the small device volume, low operating temperature, and weak electron-phonon coupling in titanium film. Measurements were done using a cryogenic black body emitter producing well-controlled femtowatt power levels. The achieved optical sensitivity is suitable for the low-background spectroscopy of molecular lines on next generation space telescopes.

[1]  Boris S. Karasik,et al.  Low noise in a diffusion-cooled hot-electron mixer at 2.5 THz , 1997 .

[2]  K. Irwin An application of electrothermal feedback for high resolution cryogenic particle detection , 1995 .

[3]  Boris S. Karasik,et al.  Development of the nano-HEB array for low-background far-IR applications , 2010, Astronomical Telescopes + Instrumentation.

[4]  S. Pereverzev,et al.  Noise Measurements in Hot-Electron Titanium Nanobolometers , 2009, IEEE Transactions on Applied Superconductivity.

[5]  Betty A. Young,et al.  Using ion implantation to adjust the transition temperature of superconducting films , 2004 .

[6]  J. R. Gao,et al.  Low-noise transition edge sensor (TES) for SAFARI instrument on SPICA , 2010, Astronomical Telescopes + Instrumentation.

[7]  Jonas Zmuidzinas,et al.  Titanium Nitride Films for Ultrasensitive Microresonator Detectors , 2010, 1003.5584.

[8]  E. V. Pechen,et al.  Diffusion cooling mechanism in a hot‐electron NbC microbolometer mixer , 1996 .

[9]  M. Shaw,et al.  Proof of Concept of the Quantum Capacitance Detector , 2010 .

[10]  A. Sergeev,et al.  Millisecond electron–phonon relaxation in ultrathin disordered metal films at millikelvin temperatures , 2001, cond-mat/0104083.

[11]  Chao-Chun Chen,et al.  Transmission of Microwave Through Perforated Flat Plates of Finite Thickness , 1973 .

[12]  R J Schoelkopf,et al.  Photon-mediated thermal relaxation of electrons in nanostructures. , 2004, Physical review letters.

[13]  T. Kutsuwa,et al.  A single-photon detector in the far-infrared range , 2000, Nature.

[14]  T. Nakagawa,et al.  The space infrared telescope for cosmology and astrophysics: SPICA A joint mission between JAXA and ESA , 2009 .

[15]  Daniel E. Prober,et al.  Superconducting terahertz mixer using a transition-edge microbolometer , 1993 .

[16]  Leonid Kuzmin,et al.  Nonequilibrium theory of a hot-electron bolometer with normal metal-insulator-superconductor tunnel junction , 2001 .

[17]  A. D. Turner,et al.  Distributed Antenna-Coupled TES for FIR Detector Arrays , 2008 .

[18]  J. J. Bock,et al.  Progress on background-limited membrane-isolated TES bolometers for far-IR/submillimeter spectroscopy , 2006, SPIE Astronomical Telescopes + Instrumentation.

[19]  J. Lamarre Photon noise in photometric instruments at far-infrared and submillimeter wavelengths. , 1986, Applied optics.

[20]  David Olaya,et al.  Ultrasensitive hot-electron nanobolometers for terahertz astrophysics. , 2007, Nature nanotechnology.

[21]  H. Leduc,et al.  A broadband superconducting detector suitable for use in large arrays , 2003, Nature.

[22]  Boris S. Karasik,et al.  Photon-noise-limited direct detector based on disorder-controlled electron heating , 2000 .

[23]  J. Kneib,et al.  Submillimeter Galaxies , 2002, astro-ph/0202228.