Development of cathode-electrolyte-interphase for safer lithium batteries

[1]  Zonghai Chen,et al.  Probing the Thermal-Driven Structural and Chemical Degradation of Ni-Rich Layered Cathodes by Co/Mn Exchange. , 2020, Journal of the American Chemical Society.

[2]  Donghai Wang,et al.  Low-temperature and high-rate-charging lithium metal batteries enabled by an electrochemically active monolayer-regulated interface , 2020 .

[3]  Chibueze V. Amanchukwu,et al.  Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries , 2020, Nature Energy.

[4]  Zonghai Chen,et al.  Electrolytes: Advanced Electrolytes for Fast‐Charging High‐Voltage Lithium‐Ion Batteries in Wide‐Temperature Range (Adv. Energy Mater. 22/2020) , 2020, Advanced Energy Materials.

[5]  Lei Fan,et al.  Synergistic Dual-Additives Electrolyte enables Practical Lithium Metal Batteries. , 2020, Angewandte Chemie.

[6]  Lei Fan,et al.  Colossal Granular Lithium Deposits Enabled by the Grain‐Coarsening Effect for High‐Efficiency Lithium Metal Full Batteries , 2020, Advanced materials.

[7]  Xiulin Fan,et al.  Tuning the Anode–Electrolyte Interface Chemistry for Garnet‐Based Solid‐State Li Metal Batteries , 2020, Advanced materials.

[8]  K. Amine,et al.  Toward a high-voltage fast-charging pouch cell with TiO2 cathode coating and enhanced battery safety , 2020 .

[9]  Xiulin Fan,et al.  Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries , 2020, Nature Energy.

[10]  Xuning Feng,et al.  Mitigating Thermal Runaway of Lithium-Ion Batteries , 2020 .

[11]  Ping Liu,et al.  An All-Fluorinated Ester Electrolyte for Stable High-Voltage Li Metal Batteries Capable of Ultra-Low-Temperature Operation , 2020, ACS Energy Letters.

[12]  Adelaide M. Nolan,et al.  The Thermal Stability of Lithium Solid Electrolytes with Metallic Lithium , 2020, Joule.

[13]  Yuki Yamada,et al.  A cyclic phosphate-based battery electrolyte for high voltage and safe operation , 2020 .

[14]  Ellen Ivers-Tiffée,et al.  Benchmarking the performance of all-solid-state lithium batteries , 2020 .

[15]  Darren H. S. Tan,et al.  From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries , 2020, Nature Nanotechnology.

[16]  Jun Lu,et al.  Cobalt in lithium-ion batteries , 2020, Science.

[17]  L. Archer,et al.  Rechargeable Lithium Metal Batteries with an In‐Built Solid‐State Polymer Electrolyte and a High Voltage/Loading Ni‐Rich Layered Cathode , 2020, Advanced materials.

[18]  Ya‐Xia Yin,et al.  Enabling Durable Electrochemical Interface via Artificial Amorphous Cathode Electrolyte Interphase for Hybrid Solid/Liquid Lithium-Metal Batteries. , 2020, Angewandte Chemie.

[19]  Yan Zhao,et al.  A reliable approach of differentiating discrete sampled-data for battery diagnosis , 2020 .

[20]  Chaoyang Wang,et al.  A new approach to both high safety and high performance of lithium-ion batteries , 2020, Science Advances.

[21]  Yutao Li,et al.  Li metal deposition and stripping in a solid-state battery via Coble creep , 2020, Nature.

[22]  O. Borodin,et al.  Real-time mass spectrometric characterization of the solid–electrolyte interphase of a lithium-ion battery , 2020, Nature Nanotechnology.

[23]  Evan M. Erickson,et al.  High-nickel layered oxide cathodes for lithium-based automotive batteries , 2020 .

[24]  Qiang Zhang,et al.  Fluorinated Solid-Electrolyte Interphase in High-Voltage Lithium Metal Batteries , 2019, Joule.

[25]  Shang Gao,et al.  A comparative investigation of aging effects on thermal runaway behavior of lithium-ion batteries , 2019, eTransportation.

[26]  Xiulin Fan,et al.  Designing In-Situ-Formed Interphases Enables Highly Reversible Cobalt-Free LiNiO2 Cathode for Li-ion and Li-metal Batteries , 2019, Joule.

[27]  Xiulin Fan,et al.  All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents , 2019, Nature Energy.

[28]  Ji‐Guang Zhang,et al.  Nonflammable Electrolytes for Lithium Ion Batteries Enabled by Ultraconformal Passivation Interphases , 2019, ACS Energy Letters.

[29]  Longlong Wang,et al.  Differentiated Lithium Salt Design for Multilayered PEO Electrolyte Enables a High‐Voltage Solid‐State Lithium Metal Battery , 2019, Advanced science.

[30]  Hongkyung Lee,et al.  Monolithic solid–electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization , 2019, Nature Energy.

[31]  Xifei Li,et al.  Controllable Cathode–Electrolyte Interface of Li[Ni0.8Co0.1Mn0.1]O2 for Lithium Ion Batteries: A Review , 2019, Advanced Energy Materials.

[32]  Lilu Liu,et al.  Practical evaluation of energy densities for sulfide solid-state batteries , 2019, eTransportation.

[33]  J. Dahn,et al.  Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte , 2019, Nature Energy.

[34]  Xuning Feng,et al.  Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database , 2019, Applied Energy.

[35]  Jose L. Mendoza-Cortes,et al.  Stabilizing polymer electrolytes in high-voltage lithium batteries , 2019, Nature Communications.

[36]  Ji‐Guang Zhang,et al.  High‐Performance Silicon Anodes Enabled By Nonflammable Localized High‐Concentration Electrolytes , 2019, Advanced Energy Materials.

[37]  Hongkyung Lee,et al.  Enabling High-Voltage Lithium-Metal Batteries under Practical Conditions , 2019, Joule.

[38]  Qingsong Wang,et al.  A review of lithium ion battery failure mechanisms and fire prevention strategies , 2019, Progress in Energy and Combustion Science.

[39]  Hongkyung Lee,et al.  High-energy lithium metal pouch cells with limited anode swelling and long stable cycles , 2019, Nature Energy.

[40]  Wangda Li,et al.  Ethylene Carbonate‐Free Electrolytes for High‐Nickel Layered Oxide Cathodes in Lithium‐Ion Batteries , 2019, Advanced Energy Materials.

[41]  Liquan Chen,et al.  Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V , 2019, Nature Energy.

[42]  Zonghai Chen,et al.  Building ultraconformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes , 2019, Nature Energy.

[43]  J. Janek,et al.  On the Functionality of Coatings for Cathode Active Materials in Thiophosphate‐Based All‐Solid‐State Batteries , 2019, Advanced Energy Materials.

[44]  Qing Zhao,et al.  Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries , 2019, Nature Energy.

[45]  Yan Wang,et al.  Computational Screening of Cathode Coatings for Solid-State Batteries , 2019, Joule.

[46]  K. Amine,et al.  Injection of oxygen vacancies in the bulk lattice of layered cathodes , 2019, Nature Nanotechnology.

[47]  Hong Li,et al.  Practical Evaluation of Li-Ion Batteries , 2019, Joule.

[48]  Jun Liu,et al.  Critical Parameters for Evaluating Coin Cells and Pouch Cells of Rechargeable Li-Metal Batteries , 2019, Joule.

[49]  Yuki Yamada,et al.  Advances and issues in developing salt-concentrated battery electrolytes , 2019, Nature Energy.

[50]  J. Dahn,et al.  Operando Pressure Measurements Reveal Solid Electrolyte Interphase Growth to Rank Li-Ion Cell Performance , 2019, Joule.

[51]  Hongkyung Lee,et al.  High-Concentration Ether Electrolytes for Stable High-Voltage Lithium Metal Batteries , 2019, ACS Energy Letters.

[52]  J. Dahn,et al.  Is Cobalt Needed in Ni-Rich Positive Electrode Materials for Lithium Ion Batteries? , 2019, Journal of The Electrochemical Society.

[53]  Jun Lu,et al.  Bridging the academic and industrial metrics for next-generation practical batteries , 2019, Nature Nanotechnology.

[54]  Minggao Ouyang,et al.  Time Sequence Map for Interpreting the Thermal Runaway Mechanism of Lithium-Ion Batteries With LiNixCoyMnzO2 Cathode , 2018, Front. Energy Res..

[55]  Tongchao Liu,et al.  In situ quantification of interphasial chemistry in Li-ion battery , 2018, Nature Nanotechnology.

[56]  L. M. Rodriguez-Martinez,et al.  Opportunities for Rechargeable Solid-State Batteries Based on Li-Intercalation Cathodes , 2018, Joule.

[57]  Yu-Guo Guo,et al.  Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries , 2018, Science Advances.

[58]  Jianqiu Li,et al.  Model-based thermal runaway prediction of lithium-ion batteries from kinetics analysis of cell components , 2018, Applied Energy.

[59]  Lin Xu,et al.  Interfaces in Solid-State Lithium Batteries , 2018, Joule.

[60]  Jianqiu Li,et al.  Thermal Runaway of Lithium-Ion Batteries without Internal Short Circuit , 2018, Joule.

[61]  Yi Cui,et al.  Correlating Structure and Function of Battery Interphases at Atomic Resolution Using Cryoelectron Microscopy , 2018, Joule.

[62]  J. Janek,et al.  Gas Evolution in All-Solid-State Battery Cells , 2018, ACS Energy Letters.

[63]  Wangda Li,et al.  Extending the Service Life of High‐Ni Layered Oxides by Tuning the Electrode–Electrolyte Interphase , 2018, Advanced Energy Materials.

[64]  Xiqian Yu,et al.  Dynamic evolution of cathode electrolyte interphase (CEI) on high voltage LiCoO2 cathode and its interaction with Li anode , 2018, Energy Storage Materials.

[65]  Kang Xu,et al.  Localized High-Concentration Sulfone Electrolytes for High-Efficiency Lithium-Metal Batteries , 2018, Chem.

[66]  Hongkyung Lee,et al.  High-Efficiency Lithium Metal Batteries with Fire-Retardant Electrolytes , 2018, Joule.

[67]  Lynden A. Archer,et al.  Cryo-STEM mapping of solid–liquid interfaces and dendrites in lithium-metal batteries , 2018, Nature.

[68]  K. Amine,et al.  Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries , 2018, Nature Nanotechnology.

[69]  Jun Liu,et al.  Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries , 2018, Nature Energy.

[70]  Ji‐Guang Zhang,et al.  Stable cycling of high-voltage lithium metal batteries in ether electrolytes , 2018, Nature Energy.

[71]  Ji‐Guang Zhang,et al.  High Voltage Operation of Ni‐Rich NMC Cathodes Enabled by Stable Electrode/Electrolyte Interphases , 2018 .

[72]  Ji‐Guang Zhang,et al.  Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries , 2018, Nature Energy.

[73]  Yi Cui,et al.  Materials for lithium-ion battery safety , 2018, Science Advances.

[74]  Weishan Li,et al.  Designing Low Impedance Interface Films Simultaneously on Anode and Cathode for High Energy Batteries , 2018, Advanced Energy Materials.

[75]  O. Borodin,et al.  A carbonate-free, sulfone-based electrolyte for high-voltage Li-ion batteries , 2018 .

[76]  Ji‐Guang Zhang,et al.  High‐Voltage Lithium‐Metal Batteries Enabled by Localized High‐Concentration Electrolytes , 2018, Advanced materials.

[77]  Jun Lu,et al.  Stabilization of a High-Capacity and High-Power Nickel-Based Cathode for Li-Ion Batteries , 2018 .

[78]  G. Ceder,et al.  Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials , 2018, Nature.

[79]  J. Dahn,et al.  LiPO2F2 as an Electrolyte Additive in Li[Ni0.5Mn0.3Co0.2]O2/Graphite Pouch Cells , 2018 .

[80]  Wengao Zhao,et al.  Toward a stable solid-electrolyte-interfaces on nickel-rich cathodes: LiPO 2 F 2 salt-type additive and its working mechanism for LiNi 0.5 Mn 0.25 Co 0.25 O 2 cathodes , 2018 .

[81]  Arumugam Manthiram,et al.  Electrode–electrolyte interfaces in lithium-based batteries , 2018 .

[82]  Hao Zhang,et al.  A High‐Capacity O2‐Type Li‐Rich Cathode Material with a Single‐Layer Li2MnO3 Superstructure , 2018, Advanced materials.

[83]  S. Choudhury,et al.  Fast ion transport at solid–solid interfaces in hybrid battery anodes , 2018 .

[84]  Liumin Suo,et al.  Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries , 2018, Proceedings of the National Academy of Sciences.

[85]  Kang Xu,et al.  Highly Fluorinated Interphases Enable High-Voltage Li-Metal Batteries , 2018 .

[86]  Yayuan Liu,et al.  Lithium Metal Anodes: A Recipe for Protection , 2017 .

[87]  Jianming Zheng,et al.  Behavior of Lithium Metal Anodes under Various Capacity Utilization and High Current Density in Lithium Metal Batteries , 2017 .

[88]  Yi Yu,et al.  Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy , 2017, Science.

[89]  G. Veith,et al.  Lithium malonatoborate additives enabled stable cycling of 5 V lithium metal and lithium ion batteries , 2017 .

[90]  Jaephil Cho,et al.  Mechanisms for electrochemical performance enhancement by the salt-type electrolyte additive, lithium difluoro(oxalato)borate, in high-voltage lithium-ion batteries , 2017 .

[91]  Pulickel M. Ajayan,et al.  A materials perspective on Li-ion batteries at extreme temperatures , 2017, Nature Energy.

[92]  Jie Xiao,et al.  Research Progress towards Understanding the Unique Interfaces between Concentrated Electrolytes and Electrodes for Energy Storage Applications , 2017, Advanced science.

[93]  Jianming Zheng,et al.  Electrolyte additive enabled fast charging and stable cycling lithium metal batteries , 2017, Nature Energy.

[94]  Jun Lu,et al.  State-of-the-art characterization techniques for advanced lithium-ion batteries , 2017, Nature Energy.

[95]  G. Veith,et al.  A Novel Electrolyte Salt Additive for Lithium‐Ion Batteries with Voltages Greater than 4.7 V , 2017 .

[96]  Zonghai Chen,et al.  The role of nanotechnology in the development of battery materials for electric vehicles. , 2016, Nature nanotechnology.

[97]  Clare P. Grey,et al.  Fluoroethylene Carbonate and Vinylene Carbonate Reduction: Understanding Lithium-Ion Battery Electrolyte Additives and Solid Electrolyte Interphase Formation , 2016 .

[98]  Yuki Yamada,et al.  Superconcentrated electrolytes for a high-voltage lithium-ion battery , 2016, Nature Communications.

[99]  Satoshi Hori,et al.  High-power all-solid-state batteries using sulfide superionic conductors , 2016, Nature Energy.

[100]  Kang Xu,et al.  “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries , 2015, Science.

[101]  J. Dahn,et al.  Study of triallyl phosphate as an electrolyte additive for high voltage lithium-ion cells , 2015 .

[102]  George Crabtree,et al.  Perspective: The energy-storage revolution , 2015, Nature.

[103]  Kang Xu,et al.  Electrolytes and interphases in Li-ion batteries and beyond. , 2014, Chemical reviews.

[104]  C. Lee,et al.  Depth profile studies on nickel rich cathode material surfaces after cycling with an electrolyte containing vinylene carbonate at elevated temperature. , 2014, Physical chemistry chemical physics : PCCP.

[105]  Gilbert M. Brown,et al.  Synthesis and Characterization of Lithium Bis(fluoromalonato)borate for Lithium‐Ion Battery Applications , 2014 .

[106]  Yuki Yamada,et al.  Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries. , 2014, Journal of the American Chemical Society.

[107]  Meiten Koh,et al.  Fluorinated electrolytes for 5 V lithium-ion battery chemistry , 2013 .

[108]  Chong Seung Yoon,et al.  Nanostructured high-energy cathode materials for advanced lithium batteries. , 2012, Nature materials.

[109]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[110]  Ilias Belharouak,et al.  High-energy cathode material for long-life and safe lithium batteries. , 2009, Nature materials.

[111]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[112]  Xuning Feng,et al.  Investigating the relationship between internal short circuit and thermal runaway of lithium-ion batteries under thermal abuse condition , 2021 .

[113]  Baohua Li,et al.  An in-depth understanding of the effect of aluminum doping in high-nickel cathodes for lithium-ion batteries , 2021 .

[114]  A. Manthiram,et al.  Cobalt-free, high-nickel layered oxide cathodes for lithium-ion batteries: Progress, challenges, and perspectives , 2021 .

[115]  Chen‐Zi Zhao,et al.  Liquid phase therapy to solid electrolyte–electrode interface in solid-state Li metal batteries: A review , 2020 .

[116]  J. Dahn,et al.  1,2,6-Oxadithiane 2,2,6,6-tetraoxide as an Advanced Electrolyte Additive for Li[Ni0.5Mn0.3Co0.2]O2/Graphite Pouch Cells , 2019, Journal of The Electrochemical Society.

[117]  J. Dahn,et al.  Combinations of LiPO2F2and Other Electrolyte Additives in Li[Ni0.5Mn0.3Co0.2]O2/Graphite Pouch Cells , 2018 .

[118]  Chunsheng Wang,et al.  Perspective—Fluorinating Interphases , 2018, Journal of The Electrochemical Society.

[119]  Xuning Feng,et al.  Thermal runaway mechanism of lithium ion battery for electric vehicles: A review , 2018 .

[120]  Yuki Yamada,et al.  Fire-extinguishing organic electrolytes for safe batteries , 2018 .

[121]  Mengyun Nie,et al.  The Impact of Electrolyte Additives and Upper Cut-off Voltage on the Formation of a Rocksalt Surface Layer in LiNi0.8Mn0.1Co0.1O2 Electrodes , 2017 .

[122]  Jaephil Cho,et al.  Interfacial Architectures Derived by Lithium Difluoro(bisoxalato) Phosphate for Lithium‐Rich Cathodes with Superior Cycling Stability and Rate Capability , 2017 .

[123]  E. Peled,et al.  Review—SEI: Past, Present and Future , 2017 .

[124]  J. Dahn,et al.  A Guide to Ethylene Carbonate-Free Electrolyte Making for Li-Ion Cells , 2017 .

[125]  J. Dahn,et al.  Special Synergy between Electrolyte Additives and Positive Electrode Surface Coating to Enhance the Performance of Li[Ni0.6Mn0.2Co0.2]O2/Graphite Cells , 2016 .

[126]  J. Dahn,et al.  The Effects of a Ternary Electrolyte Additive System on the Electrode/Electrolyte Interfaces in High Voltage Li-Ion Cells , 2016 .

[127]  Yuki Yamada,et al.  Review—Superconcentrated Electrolytes for Lithium Batteries , 2015 .

[128]  N. Sinha,et al.  Study of Methylene Methanedisulfonate as an Additive for Li-Ion Cells , 2014 .

[129]  Liu Zhou,et al.  Improving the Performance of Graphite/ LiNi0.5Mn1.5O4 Cells at High Voltage and Elevated Temperature with Added Lithium Bis(oxalato) Borate (LiBOB) , 2013 .