On the linear combination of normal and Laplace random variables

SummaryThe exact distribution of the linear combination αX+βY is derived when X and Y are normal and Laplace random variables distributed independently of each other. A program in MAPLE is provided to compute the associated percentage points.

[1]  D. G. Chapman Some two Sample Tests , 1950 .

[2]  R. Fisher THE FIDUCIAL ARGUMENT IN STATISTICAL INFERENCE , 1935 .

[3]  K. Helmes,et al.  A Convergence Theorem for Random Linear Combinations of Independent Normal Random Variables , 1979 .

[4]  N. Turkkan,et al.  Bayesian analysis of the difference of two proportions , 1993 .

[5]  Viktor Witkovský,et al.  Computing the Distribution of a Linear Combination of Inverted Gamma Variables , 2001, Kybernetika.

[6]  R. Davies The distribution of a linear combination of 2 random variables , 1980 .

[7]  P. Moschopoulos,et al.  The distribution of the sum of independent gamma random variables , 1985 .

[8]  Mir M. Ali,et al.  Distribution of linear combination of exponential variates , 1982 .

[9]  A. Dobson,et al.  Confidence intervals for weighted sums of Poisson parameters. , 1991, Statistics in medicine.

[10]  G. D. Lin,et al.  An inequality for the weighted sums of pairwise i.i.d. generalized Rayleigh random variables , 2001 .

[11]  T. G. Pham,et al.  Reliability of a standby system with beta-distributed component lives , 1994 .

[12]  R. Farebrother The Distribution of a Positive Linear Combination of X2 Random Variables , 1984 .

[13]  Jeanne Albert,et al.  Sums of Uniformly Distributed Variables: A Combinatorial Approach , 2002 .

[14]  S. Provost On sums of independent gamma eandom yariames , 1989 .

[15]  Yu. A. Brychkov,et al.  Integrals and series , 1992 .

[16]  B. Kamgar-Parsi,et al.  Distribution and moments of the weighted sum of uniforms random variables, with applications in reducing monte carlo simulations , 1995 .

[17]  P. Hitczenko A NOTE ON A DISTRIBUTION OF WEIGHTED SUMS OF I.I.D. RAYLEIGH RANDOM VARIABLES , 1998 .