On the linear combination of normal and Laplace random variables
暂无分享,去创建一个
[1] D. G. Chapman. Some two Sample Tests , 1950 .
[2] R. Fisher. THE FIDUCIAL ARGUMENT IN STATISTICAL INFERENCE , 1935 .
[3] K. Helmes,et al. A Convergence Theorem for Random Linear Combinations of Independent Normal Random Variables , 1979 .
[4] N. Turkkan,et al. Bayesian analysis of the difference of two proportions , 1993 .
[5] Viktor Witkovský,et al. Computing the Distribution of a Linear Combination of Inverted Gamma Variables , 2001, Kybernetika.
[6] R. Davies. The distribution of a linear combination of 2 random variables , 1980 .
[7] P. Moschopoulos,et al. The distribution of the sum of independent gamma random variables , 1985 .
[8] Mir M. Ali,et al. Distribution of linear combination of exponential variates , 1982 .
[9] A. Dobson,et al. Confidence intervals for weighted sums of Poisson parameters. , 1991, Statistics in medicine.
[10] G. D. Lin,et al. An inequality for the weighted sums of pairwise i.i.d. generalized Rayleigh random variables , 2001 .
[11] T. G. Pham,et al. Reliability of a standby system with beta-distributed component lives , 1994 .
[12] R. Farebrother. The Distribution of a Positive Linear Combination of X2 Random Variables , 1984 .
[13] Jeanne Albert,et al. Sums of Uniformly Distributed Variables: A Combinatorial Approach , 2002 .
[14] S. Provost. On sums of independent gamma eandom yariames , 1989 .
[15] Yu. A. Brychkov,et al. Integrals and series , 1992 .
[16] B. Kamgar-Parsi,et al. Distribution and moments of the weighted sum of uniforms random variables, with applications in reducing monte carlo simulations , 1995 .
[17] P. Hitczenko. A NOTE ON A DISTRIBUTION OF WEIGHTED SUMS OF I.I.D. RAYLEIGH RANDOM VARIABLES , 1998 .