Raman-in-SEM, a multimodal and multiscale analytical tool: performance for materials and expertise.

The availability of Raman spectroscopy in a powerful analytical scanning electron microscope (SEM) allows morphological, elemental, chemical, physical and electronic analysis without moving the sample between instruments. This paper documents the metrological performance of the SEMSCA commercial Raman interface operated in a low vacuum SEM. It provides multiscale and multimodal analyses as Raman/EDS, Raman/cathodoluminescence or Raman/STEM (STEM: scanning transmission electron microscopy) as well as Raman spectroscopy on nanomaterials. Since Raman spectroscopy in a SEM can be influenced by several SEM-related phenomena, this paper firstly presents a comparison of this new tool with a conventional micro-Raman spectrometer. Then, some possible artefacts are documented, which are due to the impact of electron beam-induced contamination or cathodoluminescence contribution to the Raman spectra, especially with geological samples. These effects are easily overcome by changing or adapting the Raman spectrometer and the SEM settings and methodology. The deletion of the adverse effect of cathodoluminescence is solved by using a SEM beam shutter during Raman acquisition. In contrast, this interface provides the ability to record the cathodoluminescence (CL) spectrum of a phase. In a second part, this study highlights the interest and efficiency of the coupling in characterizing micrometric phases at the same point. This multimodal approach is illustrated with various issues encountered in geosciences.

[1]  Royston Goodacre,et al.  Surface-enhanced Raman spectroscopy for bacterial discrimination utilizing a scanning electron microscope with a Raman spectroscopy interface. , 2004, Analytical chemistry.

[2]  Alian Wang,et al.  Database of Standard Raman Spectra of Minerals and Related Inorganic Crystals , 1994 .

[3]  M. Lorblanchet,et al.  An initial Raman microscopic investigation of prehistoric rock art in caves of the Quercy District, S.W. France , 1999 .

[4]  R. Goodacre,et al.  Discrimination of bacteria using surface-enhanced Raman spectroscopy. , 2004, Analytical chemistry.

[5]  J. Robertson,et al.  Photoluminescence and Raman spectroscopy in hydrogenated carbon films , 1997 .

[6]  C. Roques-carmes,et al.  Cathodoluminescence applied to the microcharacterization of mineral materials : a present status in experimentation and interpretation , 1992 .

[7]  A. Searl,et al.  Cathodoluminescence and growth of cassiterite in the composite lodes at South Crofty Mine, Cornwall, England , 1991, Mineralogical Magazine.

[8]  G. Remond Exemples d'identification et de localisation des éléments en traces dans des minéraux luminescents (cassitérites) à l'aide de l'analyseur ionique , 1973 .

[9]  S. Török,et al.  Combined SEM/EDX and micro-Raman spectroscopy analysis of uranium minerals from a former uranium mine. , 2009, Journal of hazardous materials.

[10]  F. Pointurier,et al.  In-SEM Raman microspectroscopy coupled with EDX--a case study of uranium reference particles. , 2014, The Analyst.

[11]  Michael T. Postek,et al.  An approach to the reduction of hydrocarbon contamination in the scanning electron microscope , 2006 .

[12]  P. Ribbe,et al.  An electron microprobe study of luminescence centers in cassiterite , 1971 .

[13]  D. Drescher,et al.  Raman characterization of amorphous carbon films , 1995 .

[14]  KEEPING IT CLEAN,et al.  Keeping it clean. , 2014, Joint Commission perspectives. Joint Commission on Accreditation of Healthcare Organizations.

[15]  X. Bourrat,et al.  Origin of growth defects in pearl , 2012 .

[16]  P. Jézéquel,et al.  Characterization and origin of black and red Magdalenian pigments from Grottes de la Garenne (Vallée moyenne de la Creuse-France): a mineralogical and geochemical approach of the study of prehistorical paintings , 2011 .

[17]  J. Greve,et al.  Parallel high-resolution confocal Raman SEM analysis of inorganic and organic bone matrix constituents , 2005, Journal of The Royal Society Interface.

[18]  H. Salomon,et al.  Le groupe des « bisons adossés » de Lascaux. Étude de la technique de l'artiste par analyse des pigments , 2006 .

[19]  A. Brooker,et al.  Damage and molecular changes under a laser beam in SEM‐EDX/MRS interface: a case study on iron‐rich particles , 2011 .

[20]  David B. Williams,et al.  Transmission Electron Microscopy: A Textbook for Materials Science , 1996 .

[21]  N. Maubec,et al.  Characterization of alunite supergroup minerals by Raman spectroscopy. , 2012, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[22]  K. S. Krishnan,et al.  A New Type of Secondary Radiation , 1928, Nature.

[23]  N. Maubec,et al.  Coupled SEM-microRaman system: A powerful tool to characterize a micrometric aluminum-phosphate–sulfate (APS) , 2013 .

[24]  Sheri N. White,et al.  Laser Raman spectroscopy as a technique for identification of seafloor hydrothermal and cold seep minerals , 2009 .

[25]  X. Bourrat,et al.  The co-effect of organic matrix from carp otolith and microenvironment on calcium carbonate mineralization. , 2013, Materials science & engineering. C, Materials for biological applications.

[26]  D. Ohnenstetter,et al.  Cathodoluminescence of synthetic (doped with rare-earth elements) and natural anhydrites , 1997 .

[27]  Tom Levesque,et al.  Keeping It Clean! , 2011, Microscopy Today.

[28]  I. Drummond,et al.  27. Hydrocarbon contamination in vacuum dependent scientific instruments , 1978 .

[29]  Martin Müller,et al.  A BSE scintillation detector in the (S)TEM , 1986 .

[30]  M. Harr,et al.  AN ELECTRON MICROPROBE STUDY OF LUMINESCENCE CENTERS IN CASSITERITE , 2007 .

[31]  X. Bourrat,et al.  Dynamics of sheet nacre formation in bivalves. , 2009, Journal of structural biology.

[32]  P. Ledru,et al.  5: Late Variscan mineralizing systems related to orogenic processes: The French Massif Central , 2005 .

[33]  P. Černý,et al.  Some recent advances in the mineralogy and geochemistry of Nb and Ta in rare-element granitic pegmatites , 1985 .

[34]  R. Frost,et al.  Aurichalcite – An SEM and Raman spectroscopic study , 2007 .

[35]  David B. Williams,et al.  Transmission Electron Microscopy , 1996 .

[36]  Y. Dusausoy,et al.  Caracterisation cristallochimique de la cassiterite des gisements d'etain et de tungstene de Galice, Espagne , 1985 .