Hydrophobic Sponge Structure‐Based Triboelectric Nanogenerator

Hydrophobic sponge structure-based triboelectric nanogenerators using an inverse opal structured film for sustainable energy harvesting over a wide range of humid atmosphere have been successfully demonstrated. The output voltage and current density reach a record value of 130 V and 0.10 mA cm(-2) , respectively, giving over 10-fold power enhancement, compared with the flat film-based triboelectric nanogenerator.

[1]  Manoj Kumar Gupta,et al.  Unidirectional High‐Power Generation via Stress‐Induced Dipole Alignment from ZnSnO3 Nanocubes/Polymer Hybrid Piezoelectric Nanogenerator , 2014 .

[2]  Zhong Lin Wang,et al.  Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. , 2012, Nano letters.

[3]  G. Whitesides,et al.  Effects of Surface Modification and Moisture on the Rates of Charge Transfer between Metals and Organic Materials , 2004 .

[4]  Zhong Lin Wang,et al.  Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions. , 2013, ACS nano.

[5]  Rusen Yang,et al.  Effect of humidity and pressure on the triboelectric nanogenerator , 2013 .

[6]  J. Lowell,et al.  The electrification of polymers by metals , 1976 .

[7]  Dukhyun Choi,et al.  p-Type polymer-hybridized high-performance piezoelectric nanogenerators. , 2012, Nano letters.

[8]  Ying Liu,et al.  A Single‐Electrode Based Triboelectric Nanogenerator as Self‐Powered Tracking System , 2013, Advanced materials.

[9]  Bernard H. Stark,et al.  MEMS electrostatic micropower generator for low frequency operation , 2004 .

[10]  Long Lin,et al.  Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. , 2012, Nano letters.

[11]  Zhong Lin Wang,et al.  Power generation with laterally packaged piezoelectric fine wires. , 2009, Nature nanotechnology.

[12]  Zhong Lin Wang,et al.  Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system. , 2013, ACS nano.

[13]  Young-Jun Park,et al.  Sound‐Driven Piezoelectric Nanowire‐Based Nanogenerators , 2010, Advanced materials.

[14]  Jun-Bo Yoon,et al.  A robust superhydrophobic and superoleophobic surface with inverse-trapezoidal microstructures on a large transparent flexible substrate , 2010 .

[15]  Long Lin,et al.  Theory of Sliding‐Mode Triboelectric Nanogenerators , 2013, Advanced materials.

[16]  Jun Chen,et al.  Harmonic‐Resonator‐Based Triboelectric Nanogenerator as a Sustainable Power Source and a Self‐Powered Active Vibration Sensor , 2013, Advanced materials.

[17]  Xiaonan Wen,et al.  Fully Enclosed Triboelectric Nanogenerators for Applications in Water and Harsh Environments , 2013 .

[18]  Zhong Lin Wang,et al.  Direct-Current Nanogenerator Driven by Ultrasonic Waves , 2007, Science.

[19]  Zhong Lin Wang,et al.  Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy. , 2013, Nano letters.

[20]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[21]  Jun Chen,et al.  Cylindrical rotating triboelectric nanogenerator. , 2013, ACS nano.

[22]  Jae-Young Choi,et al.  Fully Rollable Transparent Nanogenerators Based on Graphene Electrodes , 2010, Advanced materials.

[23]  Sang‐Woo Kim,et al.  Mechanically Powered Transparent Flexible Charge‐Generating Nanodevices with Piezoelectric ZnO Nanorods , 2009 .

[24]  Zhong Lin Wang,et al.  Microfibre–nanowire hybrid structure for energy scavenging , 2008, Nature.

[25]  Zhong Lin Wang,et al.  Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. , 2013, Nano letters.

[26]  Weiqing Yang,et al.  Harvesting energy from the natural vibration of human walking. , 2013, ACS nano.

[27]  Jing Qiu,et al.  A magnetoelectric energy harvester with the magnetic coupling to enhance the output performance , 2012 .

[28]  Zhong Lin Wang,et al.  Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. , 2013, Nano letters.

[29]  Ji-Beom Yoo,et al.  Highly Stretchable Piezoelectric‐Pyroelectric Hybrid Nanogenerator , 2014, Advanced materials.

[30]  Zhong Lin Wang,et al.  Flexible triboelectric generator , 2012 .

[31]  Benjamin C. K. Tee,et al.  Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. , 2010, Nature materials.