Dynamic modeling of pressure reducing valves

Models are currently available for representing the dynamical behavior of most water network components. Such models are relatively simple, accurate and can be easily solved. However, there is no generally accepted dynamic model of a pressure reducing valve (PRV). The key contributions of this paper are the development of several dynamic models—two phenomenological, one behavioral, and one linear—to represent the behavior of PRVs. The models vary in complexity but perform similarly. Experimental data is used to assess the accuracy of the models. The phenomenological models are derived from physical laws and provide an excellent but complex representation of a PRV. The behavioral model is simpler and sufficient for most practical purposes. The linear model does not take the needle valve setting (which controls the valve’s speed) into account and therefore has limited use.