The muon Smasher’s guide
暂无分享,去创建一个
C. Tully | R. Sundrum | JiJi Fan | N. Arkani-Hamed | Lian-tao Wang | I. Ojalvo | N. Craig | Zhen Liu | P. Meade | M. Reece | D. Buttazzo | S. Homiller | D. Redigolo | F. Sala | A. Tesi | K. Lyu | Tianji Cai | Junyi Cheng | T. Cohen | A. Mariotti | Majid Ekhterachian | Dave Sutherland | I. G. Garcia | S. Koren | Ian Banta | M. Forslund | G. Koszegi | A. McCune | Hind Al Ali | Sean Benevedes | Qianshu Lu | Umut Oktem | Timothy D Trott | Menghang Wang | Junyi Cheng | Amara McCune | Alberto Mariotti
[1] J. Klamka. The CLIC potential for new physics , 2021, Proceedings of The European Physical Society Conference on High Energy Physics — PoS(EPS-HEP2021).
[2] T. Han,et al. Quark and gluon contents of a lepton at high energies , 2021, Journal of High Energy Physics.
[3] S. Jana,et al. Probing the RK(*) anomaly at a muon collider , 2021, Physical Review D.
[4] F. Meloni,et al. Hunting wino and higgsino dark matter at the muon collider with disappearing tracks , 2021, Journal of High Energy Physics.
[5] T. Han,et al. Heavy Higgs bosons in 2HDM at a muon collider , 2021, Physical Review D.
[6] Chang-Yuan Yao,et al. The collider tests of a leptophilic scalar for the anomalous magnetic moments , 2021, 2102.05619.
[7] D. Lucchesi,et al. Muon colliders to expand frontiers of particle physics , 2021, Nature Physics.
[8] Wei Liu,et al. Probing electroweak phase transition with multi-TeV muon colliders and gravitational waves , 2021, Journal of High Energy Physics.
[9] Priyotosh Bandyopadhyay,et al. Obscure Higgs boson at colliders , 2021 .
[10] M. Yamaguchi,et al. Muon $g-2$ at multi-TeV muon collider , 2020, 2012.03928.
[11] D. Buttazzo,et al. Probing the muon g-2 anomaly at a Muon Collider. , 2020 .
[12] R. Sundrum,et al. The scalar chemical potential in cosmological collider physics , 2020, Journal of High Energy Physics.
[13] R. Sundrum,et al. Phase transitions from the fifth dimension , 2020, Journal of High Energy Physics.
[14] T. Han,et al. WIMPs at high energy muon colliders , 2020, 2009.11287.
[15] T. Han,et al. Electroweak couplings of the Higgs boson at a multi-TeV muon collider , 2020, 2008.12204.
[16] N. Hutzler. Polyatomic molecules as quantum sensors for fundamental physics , 2020, Quantum Science and Technology.
[17] T. Han,et al. High energy leptonic collisions and electroweak parton distribution functions , 2020, Physical Review D.
[18] R. D’Agnolo,et al. Crunching Dilaton, Hidden Naturalness. , 2020, Physical review letters.
[19] D. Curtin,et al. A Guaranteed Discovery at Future Muon Colliders , 2020, 2006.16277.
[20] F. Maltoni,et al. Vector boson fusion at multi-TeV muon colliders , 2020, Journal of High Energy Physics.
[21] M. Selvaggi,et al. Measuring the Higgs self-coupling via Higgs-pair production at a 100 TeV p–p collider , 2020, The European Physical Journal C.
[22] B. Mele,et al. Measuring the quartic Higgs self-coupling at a multi-TeV muon collider , 2020, Journal of High Energy Physics.
[23] J. R. Greis,et al. Demonstration of cooling by the Muon Ionization Cooling Experiment , 2020, Nature.
[24] L. Mantani,et al. A universal framework for t-channel dark matter models , 2020, The European Physical Journal C.
[25] M. Casarsa,et al. Detector and Physics Performance at a Muon Collider , 2020, Journal of Instrumentation.
[26] Vladyslav Shtabovenko,et al. FeynCalc 9.3: New features and improvements , 2020, Comput. Phys. Commun..
[27] Zeren Simon Wang,et al. Physics with far detectors at future lepton colliders , 2019, Physical Review D.
[28] C. Caprini,et al. Detecting gravitational waves from cosmological phase transitions with LISA: an update , 2019, Journal of Cosmology and Astroparticle Physics.
[29] P. Meade,et al. Higgs bosons with large couplings to light quarks , 2019, Physical Review D.
[30] Jun Ye,et al. Atoms and molecules in the search for time-reversal symmetry violation , 2019, Nature Reviews Physics.
[31] France,et al. Higgs Boson studies at future particle colliders , 2019, Journal of High Energy Physics.
[32] Gerald Eigen,et al. The International Linear Collider. A Global Project , 2019, 1901.09829.
[33] U. Schnoor,et al. Double Higgs boson production and Higgs self-coupling extraction at CLIC , 2019, The European Physical Journal C.
[34] N. Craig,et al. The second Higgs at the lifetime frontier , 2018, Journal of High Energy Physics.
[35] B. Henning,et al. Measuring Higgs Couplings without Higgs Bosons. , 2018, Physical review letters.
[36] D. Glenzinski,et al. Charged Lepton Flavour Violation using Intense Muon Beams at Future Facilities , 2018, 1812.06540.
[37] N. Craig,et al. Long live the Higgs factory: Higgs decays to long-lived particles at future lepton colliders , 2018, Chinese Physics C.
[38] Nelson Christensen,et al. Stochastic gravitational wave backgrounds , 2018, Reports on progress in physics. Physical Society.
[39] P. Meade,et al. Measurement of the triple Higgs coupling at a HE-LHC , 2018, Journal of High Energy Physics.
[40] P. Meade,et al. Aligned and Spontaneous Flavor Violation. , 2018, Physical review letters.
[41] L. Luzio,et al. Probing new electroweak states via precision measurements at the LHC and future colliders , 2018, Journal of High Energy Physics.
[42] A. Pomarol,et al. EFT approach to the electron electric dipole moment at the two-loop level , 2018, Journal of High Energy Physics.
[43] S. Hsu,et al. Precision Higgs physics at the CEPC , 2018, Chinese Physics C.
[44] M. Reece,et al. Interpreting the electron EDM constraint , 2018, Journal of High Energy Physics.
[45] Acme Collaboration. Improved limit on the electric dipole moment of the electron , 2018, Nature.
[46] M. Geller,et al. Inflating to the Weak Scale. , 2018, Physical review letters.
[47] H. Ramani,et al. Unrestored Electroweak Symmetry. , 2018, Physical review letters.
[48] Andrea Tesi,et al. Fusing vectors into scalars at high energy lepton colliders , 2018, Journal of High Energy Physics.
[49] V. Blackmore. Recent results from the study of emittance evolution in MICE , 2018, 1806.04409.
[50] Jia Liu,et al. Enhancing Long-Lived Particles Searches at the LHC with Precision Timing Information. , 2018, Physical review letters.
[51] Berkeley,et al. Cosmologically viable low-energy supersymmetry breaking , 2018, Physical Review D.
[52] M. Venturini,et al. The design of the MEG II experiment , 2018, 1801.04688.
[53] Chiara Caprini,et al. Cosmological backgrounds of gravitational waves , 2018, Classical and Quantum Gravity.
[54] C. Hunt. Recent Results from the Study of Emittance Evolution in MICE , 2018, Proceedings of The 20th International Workshop on Neutrinos — PoS(NuFACT2018).
[55] R. Sundrum,et al. Heavy-lifting of gauge theories by cosmic inflation , 2017, 1711.03988.
[56] M. Perelstein,et al. Dynamics of Electroweak Phase Transition In Singlet-Scalar Extension of the Standard Model , 2017, 1704.03381.
[57] Alessandro Strumia,et al. Cosmological implications of Dark Matter bound states , 2017, 1702.01141.
[58] R. Rattazzi,et al. Precision tests and fine tuning in twin Higgs models , 2017, 1702.00797.
[59] M. B. Gavela,et al. ALPs effective field theory and collider signatures , 2017, The European Physical Journal C.
[60] D. d’Enterria. Higgs physics at the Future Circular Collider , 2017, 1701.02663.
[61] Zhen Liu,et al. Exotic decays of the 125 GeV Higgs boson at future e+e– colliders , 2016, 1612.09284.
[62] T. Han,et al. Electroweak splitting functions and high energy showering , 2016, 1611.00788.
[63] W. Altmannshofer,et al. Collider Signatures of Flavorful Higgs Bosons , 2016, 1610.02398.
[64] M. A. Weber,et al. Higgs physics at the CLIC electron–positron linear collider , 2016, The European Physical Journal C.
[65] Jun Gao,et al. Probing light-quark Yukawa couplings via hadronic event shapes at lepton colliders , 2016, 1608.01746.
[66] M. Venturini,et al. Search for the lepton flavour violating decay μ+→e+γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu ^+ \rightarrow , 2016, The European Physical Journal C.
[67] R. D’Agnolo,et al. Solving the Hierarchy Problem at Reheating with a Large Number of Degrees of Freedom. , 2016, Physical review letters.
[68] J. Fuster,et al. Jet reconstruction at high-energy electron–positron colliders , 2016, 1607.05039.
[69] Zhen Liu,et al. ISR effects for resonant Higgs production at future lepton colliders , 2016, Coherent States in Gauge Theories and Applications in Collider Physics.
[70] C. Focke,et al. Color-singlet production at NNLO in MCFM , 2016, The European Physical Journal C.
[71] Peter Winslow,et al. Singlet-catalyzed electroweak phase transitions in the 100 TeV frontier , 2016, 1605.06123.
[72] F. Zimmermann,et al. Towards a Mono-chromatization Scheme for Direct Higgs Production at FCC-ee , 2016 .
[73] Yue Zhang,et al. Effects of Bound States on Dark Matter Annihilation , 2016, 1604.01776.
[74] S. Ellis,et al. Impact of Future Lepton Flavor Violation Measurements in the Minimal Supersymmetric Standard Model , 2016, 1604.01419.
[75] C. Anastasiou,et al. High precision determination of the gluon fusion Higgs boson cross-section at the LHC , 2016, 1602.00695.
[76] H. Rzehak,et al. A Review of Higgs Mass Calculations in Supersymmetric Models , 2016, 1601.01890.
[77] Marco Nardecchia,et al. Millicharge or decay: a critical take on Minimal Dark Matter , 2015, 1512.05353.
[78] P. Raimondi,et al. Novel proposal for a low emittance muon beam using positron beam on target , 2015, 1509.04454.
[79] Andrea Tesi,et al. Singlet-like Higgs bosons at present and future colliders , 2015, 1505.05488.
[80] R. Palmer,et al. Design Concepts for Muon-Based Accelerators , 2015 .
[81] David E Kaplan,et al. Cosmological Relaxation of the Electroweak Scale. , 2015, Physical review letters.
[82] Marco Nardecchia,et al. Accidental matter at the LHC , 2015, 1504.00359.
[83] W. Altmannshofer,et al. Experimental constraints on the coupling of the Higgs boson to electrons , 2015, 1503.04830.
[84] H. Murayama,et al. Low-energy Supersymmetry Breaking Without the Gravitino Problem , 2015, 1503.04880.
[85] R. Sundrum,et al. Naturalness in the dark at the LHC , 2015, 1501.05310.
[86] H. K. Lou,et al. The Higgs portal above threshold , 2014, 1412.0258.
[87] Pietro Longhi,et al. Neutral naturalness from orbifold Higgs models. , 2014, Physical review letters.
[88] Brandon Murakami,et al. Searching for lepton flavor violation at a future high energy e+e- collider , 2014, 1410.1485.
[89] David Curtin,et al. Testing electroweak baryogenesis with future colliders , 2014, 1409.0005.
[90] B. Mukhopādhyāẏa,et al. Radiative return for heavy Higgs boson at a muon collider , 2014, 1408.5912.
[91] Jean-Pierre Delahaye Charles Ankenbrandt,et al. A Staged Muon Accelerator Facility For Neutrino and Collider Physics , 2014, 1502.01647.
[92] R. Frederix,et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations , 2014, 1405.0301.
[93] Marcel Vos,et al. A robust jet reconstruction algorithm for high-energy lepton colliders , 2014, 1404.4294.
[94] Nathaniel Craig,et al. The State of Supersymmetry after Run I of the LHC , 2013, 1309.0528.
[95] J. Zupan,et al. Low energy probes of PeV scale sfermions , 2013, Journal of High Energy Physics.
[96] J. Favereau,et al. DELPHES 3: a modular framework for fast simulation of a generic collider experiment , 2013, Journal of High Energy Physics.
[97] E. Eichten,et al. The Muon Collider as a H=A factory , 2013, 1306.2609.
[98] M. Pospelov,et al. Electric dipole moment signatures of PeV-scale superpartners , 2013, 1303.1172.
[99] L. Hall,et al. A cosmological upper bound on superpartner masses , 2013, 1302.2620.
[100] S. Matsumoto,et al. Mass splitting between charged and neutral winos at two-loop level , 2012, 1212.5989.
[101] The Cms Collaboration. Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC , 2012, 1207.7235.
[102] Claude Duhr,et al. Introducing an interface between FeynRules and WHIZARD , 2012 .
[103] M. Stanitzki,et al. Physics and Detectors at CLIC: CLIC Conceptual Design Report , 2012, 1202.5940.
[104] R. Sundrum,et al. SUSY, the Third Generation and the LHC , 2011, 1110.6670.
[105] Francesco Riva,et al. Strong electroweak phase transitions in the Standard Model with a singlet , 2011, 1107.5441.
[106] G. Servant,et al. Cosmological consequences of nearly conformal dynamics at the TeV scale , 2011, 1104.4791.
[107] S. Striganov,et al. Muon Collider interaction region and machine-detector interface design , 2011, 1202.3979.
[108] G. Nardini,et al. Gravitational backreaction effects on the holographic phase transition , 2010, 1007.1468.
[109] Y. Nir,et al. Flavor Physics Constraints for Physics Beyond the Standard Model , 2010, 1002.0900.
[110] M. Feindt,et al. Search for lepton-flavor-violating τ decays into three leptons with 719 million produced τ+τ− pairs , 2010, 1001.3221.
[111] Yi Wang,et al. Quasi-Single Field Inflation and Non-Gaussianities , 2009, 0911.3380.
[112] M. Buckley,et al. LHC searches for non-chiral weakly charged multiplets , 2009, 0909.4549.
[113] S. Huber,et al. Gravitational wave production by collisions: more bubbles , 2008, 0806.1828.
[114] D. Tovey,et al. On measuring the masses of pair-produced semi-invisibly decaying particles at hadron colliders , 2008, 0802.2879.
[115] Z. Si,et al. Phenomenology of hidden valleys at hadron colliders , 2007, 0712.2041.
[116] W. Kilian,et al. WHIZARD—simulating multi-particle processes at LHC and ILC , 2007, 0708.4233.
[117] A. Strumia,et al. Cosmology and Astrophysics of Minimal Dark Matter , 2007, 0706.4071.
[118] A. Wulzer,et al. A Confining Strong First-Order Electroweak Phase Transition , 2007, 0706.3388.
[119] Gabe Shaughnessy,et al. Singlet Higgs phenomenology and the electroweak phase transition , 2007, 0705.2425.
[120] R. Rattazzi,et al. The Strongly-Interacting Light Higgs , 2007, hep-ph/0703164.
[121] A. Strumia,et al. Thermal production of gravitinos , 2007, hep-ph/0701104.
[122] J. Pradler,et al. Constraints on the reheating temperature in gravitino dark matter scenarios , 2006, hep-ph/0612291.
[123] J. Hisano,et al. Non‐perturbative Effect on Thermal Relic Abundance of Dark Matter , 2006, hep-ph/0610249.
[124] G. Burdman,et al. Folded supersymmetry and the LEP paradox , 2006, hep-ph/0609152.
[125] J. Pradler,et al. Thermal gravitino production and collider tests of leptogenesis , 2006, hep-ph/0608344.
[126] L. Randall,et al. Gravitational waves from warped spacetime , 2006, hep-ph/0607158.
[127] M. Strassler,et al. Echoes of a hidden valley at hadron colliders , 2006, hep-ph/0604261.
[128] G. Giudice,et al. Electric dipole moments in split supersymmetry , 2005, hep-ph/0510197.
[129] V. Cirigliano,et al. Minimal flavor violation in the lepton sector , 2005, hep-ph/0507001.
[130] R. Harnik,et al. Natural electroweak breaking from a mirror symmetry. , 2005, Physical review letters.
[131] M. Khlopov,et al. Effects of new long-range interaction: Recombination of relic Heavy neutrinos and antineutrinos , 2005, astro-ph/0504621.
[132] J. Lesgourgues,et al. Constraining warm dark matter candidates including sterile neutrinos and light gravitinos with WMAP and the Lyman-{alpha} forest , 2005, astro-ph/0501562.
[133] S. Dimopoulos,et al. Aspects of Split Supersymmetry , 2004, hep-ph/0409232.
[134] U. Nauenberg,et al. Sleptons: Masses, Mixings, Couplings , 2004, hep-ph/0409129.
[135] A. Nelson,et al. Dirac gaugino masses and supersoft supersymmetry breaking , 2002, hep-ph/0206096.
[136] A. Nelson,et al. The Minimal Moose for a Little Higgs , 2002, hep-ph/0206020.
[137] J. Wacker,et al. Phenomenology of Electroweak Symmetry Breaking from Theory Space , 2002, hep-ph/0202089.
[138] R. Rattazzi,et al. Holography and the electroweak phase transition , 2001, hep-th/0107141.
[139] Howard Georgi,et al. Electroweak symmetry breaking from dimensional deconstruction , 2001, hep-ph/0105239.
[140] T. Hahn. Generating Feynman Diagrams and Amplitudes with FeynArts 3 , 2000, hep-ph/0012260.
[141] C. Burgess,et al. The minimal model of nonbaryonic dark matter: A singlet scalar , 2000, hep-ph/0011335.
[142] T. Ohl. O’Mega: An optimizing matrix element generator , 2000, hep-ph/0102195.
[143] L. Randall,et al. A Large mass hierarchy from a small extra dimension , 1999, hep-ph/9905221.
[144] E. al.,et al. Status of muon collider research and development and future plans , 1999, physics/9901022.
[145] M. Mangano,et al. Signals of a superlight gravitino at hadron colliders when the other superparticles are heavy , 1998, hep-ph/9801329.
[146] A. Brignole,et al. Signals of a superlight gravitino at e^+ e^- colliders when the other superparticles are heavy , 1997, hep-ph/9711516.
[147] A. Brignole,et al. On the effective interactions of a light gravitino with matter fermions , 1997, hep-th/9709111.
[148] S. Borgani,et al. The Formation of cosmic structures in a light gravitino dominated universe , 1997, astro-ph/9709047.
[149] A. Nelson,et al. The more Minimal Supersymmetric Standard Model , 1996, hep-ph/9607394.
[150] Cheng,et al. Probing Lepton Flavor Violation at Future Colliders. , 1996, Physical review letters.
[151] J. Gunion,et al. Higgs boson physics in the s-channel at μ+μ− colliders , 1996, hep-ph/9602415.
[152] A. Pomarol,et al. Horizontal symmetries for the supersymmetric flavor problem , 1995, hep-ph/9507462.
[153] S. Dimopoulos,et al. Naturalness constraints in supersymmetric theories with non-universal soft terms , 1995, hep-ph/9507282.
[154] Han,et al. s-Channel Higgs Boson Production at a Muon-Muon Collider. , 1995, Physical review letters.
[155] T. Moroi. Effects of the Gravitino on the Inflationary Universe , 1995, hep-ph/9503210.
[156] N. Mokhov,et al. Backgrounds and detector performance at a 2×2 TeV μ+μ− collider , 1995 .
[157] T. Moroi,et al. Gravitino Production in the Inflationary Universe and the Effects on Big-Bang Nucleosynthesis , 1994, astro-ph/9403061.
[158] Turner,et al. Gravitational radiation from first-order phase transitions. , 1993, Physical review. D, Particles and fields.
[159] H. Murayama,et al. Cosmological constraints on the light stable gravitino , 1993 .
[160] Ansgar Denner,et al. Feyn Calc―computer-algebraic calculation of Feynman amplitudes , 1991 .
[161] Zee,et al. Electric dipole moment of the electron and of the neutron. , 1990, Physical review letters.
[162] R. Barbieri,et al. Upper Bounds on Supersymmetric Particle Masses , 1988 .
[163] Chanowitz,et al. Unitarity bound on the scale of fermion mass generation. , 1987, Physical review letters.
[164] D. Neuffer. Multi‐TeV muon colliders , 1987 .
[165] S. Dawson. The Effective W Approximation , 1985 .
[166] H. Thacker,et al. Weak interactions at very high energies: The role of the Higgs-boson mass , 1977 .
[167] B. Zumino,et al. Broken Supersymmetry and Supergravity , 1977 .
[168] H. Thacker,et al. Strength of weak interactions at very high energies and the Higgs boson mass , 1977 .
[169] D. Dicus,et al. Upper bounds on the values of masses in unified gauge theories , 1973 .
[170] Séamus P. S. Parker,et al. Search for the decay μ+→e++e−+e+ , 1962 .
[171] E. J. Williams. Nature of the high-energy particles of penetrating radiation and status of ionization and radiation formulae , 1934 .
[172] Medhat H. M. Elsayed,et al. CEPC-SPPC Preliminary Conceptual Design Report. 1. Physics and Detector , 2015 .
[173] J. T. Childers,et al. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC , 2012 .
[174] The Table of Contents and more related content is available Download details: , 2009 .
[175] Kari Tammi,et al. TESLA: The superconducting electron positron linear collider with an integrated X-ray laser laboratory. Technical design report. Pt. 4: A detector for TESLA , 2001 .
[176] James D. Wells,et al. Phenomenology of Massive Vectorlike Doublet Leptons , 1998 .
[177] M. Veltman. Second Threshold in Weak Interactions , 1991 .
[178] M. Chanowitz,et al. The TeV physics of strongly interacting W's and Z's , 1985 .
[179] D. Neuffer. Principles and Applications of Muon Cooling , 1983 .