The muon Smasher’s guide

We lay out a comprehensive physics case for a future high-energy muon collider, exploring a range of collision energies (from 1 to 100 TeV) and luminosities. We highlight the advantages of such a collider over proposed alternatives. We show how one can leverage both the point-like nature of the muons themselves as well as the cloud of electroweak radiation that surrounds the beam to blur the dichotomy between energy and precision in the search for new physics. The physics case is buttressed by a range of studies with applications to electroweak symmetry breaking, dark matter, and the naturalness of the weak scale. Furthermore, we make sharp connections with complementary experiments that are probing new physics effects using electric dipole moments, flavor violation, and gravitational waves. An extensive appendix provides cross section predictions as a function of the center-of-mass energy for many canonical simplified models.

[1]  J. Klamka The CLIC potential for new physics , 2021, Proceedings of The European Physical Society Conference on High Energy Physics — PoS(EPS-HEP2021).

[2]  T. Han,et al.  Quark and gluon contents of a lepton at high energies , 2021, Journal of High Energy Physics.

[3]  S. Jana,et al.  Probing the RK(*) anomaly at a muon collider , 2021, Physical Review D.

[4]  F. Meloni,et al.  Hunting wino and higgsino dark matter at the muon collider with disappearing tracks , 2021, Journal of High Energy Physics.

[5]  T. Han,et al.  Heavy Higgs bosons in 2HDM at a muon collider , 2021, Physical Review D.

[6]  Chang-Yuan Yao,et al.  The collider tests of a leptophilic scalar for the anomalous magnetic moments , 2021, 2102.05619.

[7]  D. Lucchesi,et al.  Muon colliders to expand frontiers of particle physics , 2021, Nature Physics.

[8]  Wei Liu,et al.  Probing electroweak phase transition with multi-TeV muon colliders and gravitational waves , 2021, Journal of High Energy Physics.

[9]  Priyotosh Bandyopadhyay,et al.  Obscure Higgs boson at colliders , 2021 .

[10]  M. Yamaguchi,et al.  Muon $g-2$ at multi-TeV muon collider , 2020, 2012.03928.

[11]  D. Buttazzo,et al.  Probing the muon g-2 anomaly at a Muon Collider. , 2020 .

[12]  R. Sundrum,et al.  The scalar chemical potential in cosmological collider physics , 2020, Journal of High Energy Physics.

[13]  R. Sundrum,et al.  Phase transitions from the fifth dimension , 2020, Journal of High Energy Physics.

[14]  T. Han,et al.  WIMPs at high energy muon colliders , 2020, 2009.11287.

[15]  T. Han,et al.  Electroweak couplings of the Higgs boson at a multi-TeV muon collider , 2020, 2008.12204.

[16]  N. Hutzler Polyatomic molecules as quantum sensors for fundamental physics , 2020, Quantum Science and Technology.

[17]  T. Han,et al.  High energy leptonic collisions and electroweak parton distribution functions , 2020, Physical Review D.

[18]  R. D’Agnolo,et al.  Crunching Dilaton, Hidden Naturalness. , 2020, Physical review letters.

[19]  D. Curtin,et al.  A Guaranteed Discovery at Future Muon Colliders , 2020, 2006.16277.

[20]  F. Maltoni,et al.  Vector boson fusion at multi-TeV muon colliders , 2020, Journal of High Energy Physics.

[21]  M. Selvaggi,et al.  Measuring the Higgs self-coupling via Higgs-pair production at a 100 TeV p–p collider , 2020, The European Physical Journal C.

[22]  B. Mele,et al.  Measuring the quartic Higgs self-coupling at a multi-TeV muon collider , 2020, Journal of High Energy Physics.

[23]  J. R. Greis,et al.  Demonstration of cooling by the Muon Ionization Cooling Experiment , 2020, Nature.

[24]  L. Mantani,et al.  A universal framework for t-channel dark matter models , 2020, The European Physical Journal C.

[25]  M. Casarsa,et al.  Detector and Physics Performance at a Muon Collider , 2020, Journal of Instrumentation.

[26]  Vladyslav Shtabovenko,et al.  FeynCalc 9.3: New features and improvements , 2020, Comput. Phys. Commun..

[27]  Zeren Simon Wang,et al.  Physics with far detectors at future lepton colliders , 2019, Physical Review D.

[28]  C. Caprini,et al.  Detecting gravitational waves from cosmological phase transitions with LISA: an update , 2019, Journal of Cosmology and Astroparticle Physics.

[29]  P. Meade,et al.  Higgs bosons with large couplings to light quarks , 2019, Physical Review D.

[30]  Jun Ye,et al.  Atoms and molecules in the search for time-reversal symmetry violation , 2019, Nature Reviews Physics.

[31]  France,et al.  Higgs Boson studies at future particle colliders , 2019, Journal of High Energy Physics.

[32]  Gerald Eigen,et al.  The International Linear Collider. A Global Project , 2019, 1901.09829.

[33]  U. Schnoor,et al.  Double Higgs boson production and Higgs self-coupling extraction at CLIC , 2019, The European Physical Journal C.

[34]  N. Craig,et al.  The second Higgs at the lifetime frontier , 2018, Journal of High Energy Physics.

[35]  B. Henning,et al.  Measuring Higgs Couplings without Higgs Bosons. , 2018, Physical review letters.

[36]  D. Glenzinski,et al.  Charged Lepton Flavour Violation using Intense Muon Beams at Future Facilities , 2018, 1812.06540.

[37]  N. Craig,et al.  Long live the Higgs factory: Higgs decays to long-lived particles at future lepton colliders , 2018, Chinese Physics C.

[38]  Nelson Christensen,et al.  Stochastic gravitational wave backgrounds , 2018, Reports on progress in physics. Physical Society.

[39]  P. Meade,et al.  Measurement of the triple Higgs coupling at a HE-LHC , 2018, Journal of High Energy Physics.

[40]  P. Meade,et al.  Aligned and Spontaneous Flavor Violation. , 2018, Physical review letters.

[41]  L. Luzio,et al.  Probing new electroweak states via precision measurements at the LHC and future colliders , 2018, Journal of High Energy Physics.

[42]  A. Pomarol,et al.  EFT approach to the electron electric dipole moment at the two-loop level , 2018, Journal of High Energy Physics.

[43]  S. Hsu,et al.  Precision Higgs physics at the CEPC , 2018, Chinese Physics C.

[44]  M. Reece,et al.  Interpreting the electron EDM constraint , 2018, Journal of High Energy Physics.

[45]  Acme Collaboration Improved limit on the electric dipole moment of the electron , 2018, Nature.

[46]  M. Geller,et al.  Inflating to the Weak Scale. , 2018, Physical review letters.

[47]  H. Ramani,et al.  Unrestored Electroweak Symmetry. , 2018, Physical review letters.

[48]  Andrea Tesi,et al.  Fusing vectors into scalars at high energy lepton colliders , 2018, Journal of High Energy Physics.

[49]  V. Blackmore Recent results from the study of emittance evolution in MICE , 2018, 1806.04409.

[50]  Jia Liu,et al.  Enhancing Long-Lived Particles Searches at the LHC with Precision Timing Information. , 2018, Physical review letters.

[51]  Berkeley,et al.  Cosmologically viable low-energy supersymmetry breaking , 2018, Physical Review D.

[52]  M. Venturini,et al.  The design of the MEG II experiment , 2018, 1801.04688.

[53]  Chiara Caprini,et al.  Cosmological backgrounds of gravitational waves , 2018, Classical and Quantum Gravity.

[54]  C. Hunt Recent Results from the Study of Emittance Evolution in MICE , 2018, Proceedings of The 20th International Workshop on Neutrinos — PoS(NuFACT2018).

[55]  R. Sundrum,et al.  Heavy-lifting of gauge theories by cosmic inflation , 2017, 1711.03988.

[56]  M. Perelstein,et al.  Dynamics of Electroweak Phase Transition In Singlet-Scalar Extension of the Standard Model , 2017, 1704.03381.

[57]  Alessandro Strumia,et al.  Cosmological implications of Dark Matter bound states , 2017, 1702.01141.

[58]  R. Rattazzi,et al.  Precision tests and fine tuning in twin Higgs models , 2017, 1702.00797.

[59]  M. B. Gavela,et al.  ALPs effective field theory and collider signatures , 2017, The European Physical Journal C.

[60]  D. d’Enterria Higgs physics at the Future Circular Collider , 2017, 1701.02663.

[61]  Zhen Liu,et al.  Exotic decays of the 125 GeV Higgs boson at future e+e– colliders , 2016, 1612.09284.

[62]  T. Han,et al.  Electroweak splitting functions and high energy showering , 2016, 1611.00788.

[63]  W. Altmannshofer,et al.  Collider Signatures of Flavorful Higgs Bosons , 2016, 1610.02398.

[64]  M. A. Weber,et al.  Higgs physics at the CLIC electron–positron linear collider , 2016, The European Physical Journal C.

[65]  Jun Gao,et al.  Probing light-quark Yukawa couplings via hadronic event shapes at lepton colliders , 2016, 1608.01746.

[66]  M. Venturini,et al.  Search for the lepton flavour violating decay μ+→e+γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu ^+ \rightarrow , 2016, The European Physical Journal C.

[67]  R. D’Agnolo,et al.  Solving the Hierarchy Problem at Reheating with a Large Number of Degrees of Freedom. , 2016, Physical review letters.

[68]  J. Fuster,et al.  Jet reconstruction at high-energy electron–positron colliders , 2016, 1607.05039.

[69]  Zhen Liu,et al.  ISR effects for resonant Higgs production at future lepton colliders , 2016, Coherent States in Gauge Theories and Applications in Collider Physics.

[70]  C. Focke,et al.  Color-singlet production at NNLO in MCFM , 2016, The European Physical Journal C.

[71]  Peter Winslow,et al.  Singlet-catalyzed electroweak phase transitions in the 100 TeV frontier , 2016, 1605.06123.

[72]  F. Zimmermann,et al.  Towards a Mono-chromatization Scheme for Direct Higgs Production at FCC-ee , 2016 .

[73]  Yue Zhang,et al.  Effects of Bound States on Dark Matter Annihilation , 2016, 1604.01776.

[74]  S. Ellis,et al.  Impact of Future Lepton Flavor Violation Measurements in the Minimal Supersymmetric Standard Model , 2016, 1604.01419.

[75]  C. Anastasiou,et al.  High precision determination of the gluon fusion Higgs boson cross-section at the LHC , 2016, 1602.00695.

[76]  H. Rzehak,et al.  A Review of Higgs Mass Calculations in Supersymmetric Models , 2016, 1601.01890.

[77]  Marco Nardecchia,et al.  Millicharge or decay: a critical take on Minimal Dark Matter , 2015, 1512.05353.

[78]  P. Raimondi,et al.  Novel proposal for a low emittance muon beam using positron beam on target , 2015, 1509.04454.

[79]  Andrea Tesi,et al.  Singlet-like Higgs bosons at present and future colliders , 2015, 1505.05488.

[80]  R. Palmer,et al.  Design Concepts for Muon-Based Accelerators , 2015 .

[81]  David E Kaplan,et al.  Cosmological Relaxation of the Electroweak Scale. , 2015, Physical review letters.

[82]  Marco Nardecchia,et al.  Accidental matter at the LHC , 2015, 1504.00359.

[83]  W. Altmannshofer,et al.  Experimental constraints on the coupling of the Higgs boson to electrons , 2015, 1503.04830.

[84]  H. Murayama,et al.  Low-energy Supersymmetry Breaking Without the Gravitino Problem , 2015, 1503.04880.

[85]  R. Sundrum,et al.  Naturalness in the dark at the LHC , 2015, 1501.05310.

[86]  H. K. Lou,et al.  The Higgs portal above threshold , 2014, 1412.0258.

[87]  Pietro Longhi,et al.  Neutral naturalness from orbifold Higgs models. , 2014, Physical review letters.

[88]  Brandon Murakami,et al.  Searching for lepton flavor violation at a future high energy e+e- collider , 2014, 1410.1485.

[89]  David Curtin,et al.  Testing electroweak baryogenesis with future colliders , 2014, 1409.0005.

[90]  B. Mukhopādhyāẏa,et al.  Radiative return for heavy Higgs boson at a muon collider , 2014, 1408.5912.

[91]  Jean-Pierre Delahaye Charles Ankenbrandt,et al.  A Staged Muon Accelerator Facility For Neutrino and Collider Physics , 2014, 1502.01647.

[92]  R. Frederix,et al.  The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations , 2014, 1405.0301.

[93]  Marcel Vos,et al.  A robust jet reconstruction algorithm for high-energy lepton colliders , 2014, 1404.4294.

[94]  Nathaniel Craig,et al.  The State of Supersymmetry after Run I of the LHC , 2013, 1309.0528.

[95]  J. Zupan,et al.  Low energy probes of PeV scale sfermions , 2013, Journal of High Energy Physics.

[96]  J. Favereau,et al.  DELPHES 3: a modular framework for fast simulation of a generic collider experiment , 2013, Journal of High Energy Physics.

[97]  E. Eichten,et al.  The Muon Collider as a H=A factory , 2013, 1306.2609.

[98]  M. Pospelov,et al.  Electric dipole moment signatures of PeV-scale superpartners , 2013, 1303.1172.

[99]  L. Hall,et al.  A cosmological upper bound on superpartner masses , 2013, 1302.2620.

[100]  S. Matsumoto,et al.  Mass splitting between charged and neutral winos at two-loop level , 2012, 1212.5989.

[101]  The Cms Collaboration Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC , 2012, 1207.7235.

[102]  Claude Duhr,et al.  Introducing an interface between FeynRules and WHIZARD , 2012 .

[103]  M. Stanitzki,et al.  Physics and Detectors at CLIC: CLIC Conceptual Design Report , 2012, 1202.5940.

[104]  R. Sundrum,et al.  SUSY, the Third Generation and the LHC , 2011, 1110.6670.

[105]  Francesco Riva,et al.  Strong electroweak phase transitions in the Standard Model with a singlet , 2011, 1107.5441.

[106]  G. Servant,et al.  Cosmological consequences of nearly conformal dynamics at the TeV scale , 2011, 1104.4791.

[107]  S. Striganov,et al.  Muon Collider interaction region and machine-detector interface design , 2011, 1202.3979.

[108]  G. Nardini,et al.  Gravitational backreaction effects on the holographic phase transition , 2010, 1007.1468.

[109]  Y. Nir,et al.  Flavor Physics Constraints for Physics Beyond the Standard Model , 2010, 1002.0900.

[110]  M. Feindt,et al.  Search for lepton-flavor-violating τ decays into three leptons with 719 million produced τ+τ− pairs , 2010, 1001.3221.

[111]  Yi Wang,et al.  Quasi-Single Field Inflation and Non-Gaussianities , 2009, 0911.3380.

[112]  M. Buckley,et al.  LHC searches for non-chiral weakly charged multiplets , 2009, 0909.4549.

[113]  S. Huber,et al.  Gravitational wave production by collisions: more bubbles , 2008, 0806.1828.

[114]  D. Tovey,et al.  On measuring the masses of pair-produced semi-invisibly decaying particles at hadron colliders , 2008, 0802.2879.

[115]  Z. Si,et al.  Phenomenology of hidden valleys at hadron colliders , 2007, 0712.2041.

[116]  W. Kilian,et al.  WHIZARD—simulating multi-particle processes at LHC and ILC , 2007, 0708.4233.

[117]  A. Strumia,et al.  Cosmology and Astrophysics of Minimal Dark Matter , 2007, 0706.4071.

[118]  A. Wulzer,et al.  A Confining Strong First-Order Electroweak Phase Transition , 2007, 0706.3388.

[119]  Gabe Shaughnessy,et al.  Singlet Higgs phenomenology and the electroweak phase transition , 2007, 0705.2425.

[120]  R. Rattazzi,et al.  The Strongly-Interacting Light Higgs , 2007, hep-ph/0703164.

[121]  A. Strumia,et al.  Thermal production of gravitinos , 2007, hep-ph/0701104.

[122]  J. Pradler,et al.  Constraints on the reheating temperature in gravitino dark matter scenarios , 2006, hep-ph/0612291.

[123]  J. Hisano,et al.  Non‐perturbative Effect on Thermal Relic Abundance of Dark Matter , 2006, hep-ph/0610249.

[124]  G. Burdman,et al.  Folded supersymmetry and the LEP paradox , 2006, hep-ph/0609152.

[125]  J. Pradler,et al.  Thermal gravitino production and collider tests of leptogenesis , 2006, hep-ph/0608344.

[126]  L. Randall,et al.  Gravitational waves from warped spacetime , 2006, hep-ph/0607158.

[127]  M. Strassler,et al.  Echoes of a hidden valley at hadron colliders , 2006, hep-ph/0604261.

[128]  G. Giudice,et al.  Electric dipole moments in split supersymmetry , 2005, hep-ph/0510197.

[129]  V. Cirigliano,et al.  Minimal flavor violation in the lepton sector , 2005, hep-ph/0507001.

[130]  R. Harnik,et al.  Natural electroweak breaking from a mirror symmetry. , 2005, Physical review letters.

[131]  M. Khlopov,et al.  Effects of new long-range interaction: Recombination of relic Heavy neutrinos and antineutrinos , 2005, astro-ph/0504621.

[132]  J. Lesgourgues,et al.  Constraining warm dark matter candidates including sterile neutrinos and light gravitinos with WMAP and the Lyman-{alpha} forest , 2005, astro-ph/0501562.

[133]  S. Dimopoulos,et al.  Aspects of Split Supersymmetry , 2004, hep-ph/0409232.

[134]  U. Nauenberg,et al.  Sleptons: Masses, Mixings, Couplings , 2004, hep-ph/0409129.

[135]  A. Nelson,et al.  Dirac gaugino masses and supersoft supersymmetry breaking , 2002, hep-ph/0206096.

[136]  A. Nelson,et al.  The Minimal Moose for a Little Higgs , 2002, hep-ph/0206020.

[137]  J. Wacker,et al.  Phenomenology of Electroweak Symmetry Breaking from Theory Space , 2002, hep-ph/0202089.

[138]  R. Rattazzi,et al.  Holography and the electroweak phase transition , 2001, hep-th/0107141.

[139]  Howard Georgi,et al.  Electroweak symmetry breaking from dimensional deconstruction , 2001, hep-ph/0105239.

[140]  T. Hahn Generating Feynman Diagrams and Amplitudes with FeynArts 3 , 2000, hep-ph/0012260.

[141]  C. Burgess,et al.  The minimal model of nonbaryonic dark matter: A singlet scalar , 2000, hep-ph/0011335.

[142]  T. Ohl O’Mega: An optimizing matrix element generator , 2000, hep-ph/0102195.

[143]  L. Randall,et al.  A Large mass hierarchy from a small extra dimension , 1999, hep-ph/9905221.

[144]  E. al.,et al.  Status of muon collider research and development and future plans , 1999, physics/9901022.

[145]  M. Mangano,et al.  Signals of a superlight gravitino at hadron colliders when the other superparticles are heavy , 1998, hep-ph/9801329.

[146]  A. Brignole,et al.  Signals of a superlight gravitino at e^+ e^- colliders when the other superparticles are heavy , 1997, hep-ph/9711516.

[147]  A. Brignole,et al.  On the effective interactions of a light gravitino with matter fermions , 1997, hep-th/9709111.

[148]  S. Borgani,et al.  The Formation of cosmic structures in a light gravitino dominated universe , 1997, astro-ph/9709047.

[149]  A. Nelson,et al.  The more Minimal Supersymmetric Standard Model , 1996, hep-ph/9607394.

[150]  Cheng,et al.  Probing Lepton Flavor Violation at Future Colliders. , 1996, Physical review letters.

[151]  J. Gunion,et al.  Higgs boson physics in the s-channel at μ+μ− colliders , 1996, hep-ph/9602415.

[152]  A. Pomarol,et al.  Horizontal symmetries for the supersymmetric flavor problem , 1995, hep-ph/9507462.

[153]  S. Dimopoulos,et al.  Naturalness constraints in supersymmetric theories with non-universal soft terms , 1995, hep-ph/9507282.

[154]  Han,et al.  s-Channel Higgs Boson Production at a Muon-Muon Collider. , 1995, Physical review letters.

[155]  T. Moroi Effects of the Gravitino on the Inflationary Universe , 1995, hep-ph/9503210.

[156]  N. Mokhov,et al.  Backgrounds and detector performance at a 2×2 TeV μ+μ− collider , 1995 .

[157]  T. Moroi,et al.  Gravitino Production in the Inflationary Universe and the Effects on Big-Bang Nucleosynthesis , 1994, astro-ph/9403061.

[158]  Turner,et al.  Gravitational radiation from first-order phase transitions. , 1993, Physical review. D, Particles and fields.

[159]  H. Murayama,et al.  Cosmological constraints on the light stable gravitino , 1993 .

[160]  Ansgar Denner,et al.  Feyn Calc―computer-algebraic calculation of Feynman amplitudes , 1991 .

[161]  Zee,et al.  Electric dipole moment of the electron and of the neutron. , 1990, Physical review letters.

[162]  R. Barbieri,et al.  Upper Bounds on Supersymmetric Particle Masses , 1988 .

[163]  Chanowitz,et al.  Unitarity bound on the scale of fermion mass generation. , 1987, Physical review letters.

[164]  D. Neuffer Multi‐TeV muon colliders , 1987 .

[165]  S. Dawson The Effective W Approximation , 1985 .

[166]  H. Thacker,et al.  Weak interactions at very high energies: The role of the Higgs-boson mass , 1977 .

[167]  B. Zumino,et al.  Broken Supersymmetry and Supergravity , 1977 .

[168]  H. Thacker,et al.  Strength of weak interactions at very high energies and the Higgs boson mass , 1977 .

[169]  D. Dicus,et al.  Upper bounds on the values of masses in unified gauge theories , 1973 .

[170]  Séamus P. S. Parker,et al.  Search for the decay μ+→e++e−+e+ , 1962 .

[171]  E. J. Williams Nature of the high-energy particles of penetrating radiation and status of ionization and radiation formulae , 1934 .

[172]  Medhat H. M. Elsayed,et al.  CEPC-SPPC Preliminary Conceptual Design Report. 1. Physics and Detector , 2015 .

[173]  J. T. Childers,et al.  Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC , 2012 .

[174]  The Table of Contents and more related content is available Download details: , 2009 .

[175]  Kari Tammi,et al.  TESLA: The superconducting electron positron linear collider with an integrated X-ray laser laboratory. Technical design report. Pt. 4: A detector for TESLA , 2001 .

[176]  James D. Wells,et al.  Phenomenology of Massive Vectorlike Doublet Leptons , 1998 .

[177]  M. Veltman Second Threshold in Weak Interactions , 1991 .

[178]  M. Chanowitz,et al.  The TeV physics of strongly interacting W's and Z's , 1985 .

[179]  D. Neuffer Principles and Applications of Muon Cooling , 1983 .