F-Flortaucipir Tau Positron Emission Tomography Distinguishes Established Progressive Supranuclear Palsy from Controls and Parkinson Disease: A Multicenter Study

Daniel R. Schonhaut, BA, Corey T. McMillan, PhD, Salvatore Spina, MD, PhD, Bradford C. Dickerson, MD, Andrew Siderowf, MD, Michael D. Devous Sr, PhD, Richard Tsai, MD, Joseph Winer, BA, David S. Russell, MD, PhD, Irene Litvan, MD, Erik D. Roberson, MD, PhD, William W. Seeley, MD, Lea T. Grinberg, MD, PhD, Joel H. Kramer, PsyD, Bruce L. Miller, MD, Peter Pressman, MD, Ilya Nasrallah, MD, PhD, Suzanne L. Baker, PhD, Stephen N. Gomperts, MD, PhD, Keith A. Johnson, MD, Murray Grossman, MD, William J. Jagust, MD, Adam L. Boxer, MD, PhD, and Gil D. Rabinovici, MD

[1]  Alan A. Wilson,et al.  Positron emission tomography imaging of tau pathology in progressive supranuclear palsy , 2017, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[2]  Murray Grossman,et al.  Clinical diagnosis of progressive supranuclear palsy: The movement disorder society criteria , 2017, Movement disorders : official journal of the Movement Disorder Society.

[3]  Rupert Lanzenberger,et al.  Modeling Strategies for Quantification of In Vivo 18F-AV-1451 Binding in Patients with Tau Pathology , 2017, The Journal of Nuclear Medicine.

[4]  S. Gauthier,et al.  Monoamine oxidase B inhibitor, selegiline, reduces 18F-THK5351 uptake in the human brain , 2017, Alzheimer's Research & Therapy.

[5]  Suzanne L Baker,et al.  Reference Tissue–Based Kinetic Evaluation of 18F-AV-1451 for Tau Imaging , 2017, The Journal of Nuclear Medicine.

[6]  Luca Passamonti,et al.  18F-AV-1451 positron emission tomography in Alzheimer’s disease and progressive supranuclear palsy , 2017, Brain : a journal of neurology.

[7]  C. Rowe,et al.  Tau imaging with [18F]THK‐5351 in progressive supranuclear palsy , 2017, European journal of neurology.

[8]  Keith A. Johnson,et al.  Pathological correlations of [F‐18]‐AV‐1451 imaging in non‐alzheimer tauopathies , 2017, Annals of neurology.

[9]  M. Schain,et al.  Increased basal ganglia binding of 18 F‐AV‐1451 in patients with progressive supranuclear palsy , 2016, Movement disorders : official journal of the Movement Disorder Society.

[10]  C. Rowe,et al.  Aβ-amyloid and Tau Imaging in Dementia. , 2017, Seminars in nuclear medicine.

[11]  O. Hansson,et al.  Tau neuropathology correlates with FDG-PET, but not AV-1451-PET, in progressive supranuclear palsy , 2016, Acta Neuropathologica.

[12]  J. Trojanowski,et al.  Multimodal evaluation demonstrates in vivo 18F-AV-1451 uptake in autopsy-confirmed corticobasal degeneration , 2016, Acta Neuropathologica.

[13]  Nick C Fox,et al.  Characterization of tau positron emission tomography tracer [18F]AV-1451 binding to postmortem tissue in Alzheimer's disease, primary tauopathies, and other dementias , 2016, Alzheimer's & Dementia.

[14]  C. Jack,et al.  [18F]AV-1451 tau-PET uptake does correlate with quantitatively measured 4R-tau burden in autopsy-confirmed corticobasal degeneration , 2016, Acta Neuropathologica.

[15]  Kazuhiko Yanai,et al.  Advances in the development of tau PET radiotracers and their clinical applications , 2016, Ageing Research Reviews.

[16]  D. Brooks,et al.  In vivo imaging of neuromelanin in Parkinson's disease using 18F-AV-1451 PET. , 2016, Brain : a journal of neurology.

[17]  Clifford R. Jack,et al.  An autoradiographic evaluation of AV-1451 Tau PET in dementia , 2016, Acta Neuropathologica Communications.

[18]  Daniel R. Schonhaut,et al.  Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer's disease. , 2016, Brain : a journal of neurology.

[19]  Daniel R. Schonhaut,et al.  PET Imaging of Tau Deposition in the Aging Human Brain , 2016, Neuron.

[20]  Jorge Sepulcre,et al.  Tau positron emission tomographic imaging in aging and early Alzheimer disease , 2016, Annals of neurology.

[21]  Keith A. Johnson,et al.  Validating novel tau positron emission tomography tracer [F‐18]‐AV‐1451 (T807) on postmortem brain tissue , 2015, Annals of neurology.

[22]  Ming-Rong Zhang,et al.  PET Quantification of Tau Pathology in Human Brain with 11C-PBB3 , 2015, The Journal of Nuclear Medicine.

[23]  Charles DeCarli,et al.  Existing Pittsburgh Compound-B positron emission tomography thresholds are too high: statistical and pathological evaluation. , 2015, Brain : a journal of neurology.

[24]  Lin Xie,et al.  Radiosynthesis, Photoisomerization, Biodistribution, and Metabolite Analysis of 11C-PBB3 as a Clinically Useful PET Probe for Imaging of Tau Pathology , 2014, The Journal of Nuclear Medicine.

[25]  M. Murray,et al.  Differential clinicopathologic and genetic features of late-onset amnestic dementias , 2014, Acta Neuropathologica.

[26]  J. Trojanowski,et al.  Imaging of Tau Pathology in a Tauopathy Mouse Model and in Alzheimer Patients Compared to Normal Controls , 2013, Neuron.

[27]  Robert V Farese,et al.  Frontotemporal degeneration, the next therapeutic frontier: Molecules and animal models for frontotemporal degeneration drug development , 2013, Alzheimer's & Dementia.

[28]  Mark Hallett,et al.  Criteria for the diagnosis of corticobasal degeneration , 2013, Neurology.

[29]  R. Barker,et al.  Diagnostic criteria for mild cognitive impairment in Parkinson's disease: Movement Disorder Society Task Force guidelines , 2012, Movement disorders : official journal of the Movement Disorder Society.

[30]  J. Schneider,et al.  National Institute on Aging–Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's disease , 2012, Alzheimer's & Dementia.

[31]  J. Trojanowski,et al.  A harmonized classification system for FTLD-TDP pathology , 2011, Acta Neuropathologica.

[32]  R. Coleman,et al.  Use of florbetapir-PET for imaging beta-amyloid pathology. , 2011, JAMA.

[33]  D. Dickson,et al.  Neuropathology of variants of progressive supranuclear palsy. , 2010, Current opinion in neurology.

[34]  Jörn Diedrichsen,et al.  A probabilistic MR atlas of the human cerebellum , 2009, NeuroImage.

[35]  David R Williams,et al.  Progressive supranuclear palsy: clinicopathological concepts and diagnostic challenges , 2009, The Lancet Neurology.

[36]  Y. Agid,et al.  Riluzole treatment, survival and diagnostic criteria in Parkinson plus disorders: The NNIPPS Study , 2008, Brain : a journal of neurology.

[37]  D. Dickson Neuropathologic differentiation of progressive supranuclear palsy and corticobasal degeneration , 1999, Journal of Neurology.

[38]  L. Golbe,et al.  A clinical rating scale for progressive supranuclear palsy. , 2007, Brain : a journal of neurology.

[39]  A. Lees,et al.  Pathological tau burden and distribution distinguishes progressive supranuclear palsy-parkinsonism from Richardson's syndrome. , 2007, Brain : a journal of neurology.

[40]  Dennis W Dickson,et al.  Progressive Supranuclear Palsy: Pathology and Genetics , 2007, Brain pathology.

[41]  P. Lantos,et al.  Office of Rare Diseases Neuropathologic Criteria for Corticobasal Degeneration , 2002, Journal of neuropathology and experimental neurology.

[42]  J L Lancaster,et al.  Automated Talairach Atlas labels for functional brain mapping , 2000, Human brain mapping.

[43]  A. Evans,et al.  Correction for partial volume effects in PET: principle and validation. , 1998, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[44]  I Litvan,et al.  Preliminary NINDS neuropathologic criteria for Steele‐Richardson‐Olszewski syndrome (progressive supranuclear palsy) , 1994, Neurology.

[45]  W. Gibb,et al.  The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson's disease. , 1988, Journal of neurology, neurosurgery, and psychiatry.