The Zwicky Transient Facility Census of the Local Universe. I. Systematic Search for Calcium-rich Gap Transients Reveals Three Related Spectroscopic Subclasses

Using the Zwicky Transient Facility alert stream, we are conducting a large spectroscopic campaign to construct a complete, volume-limited sample of transients brighter than 20 mag, and coincident within 100″ of galaxies in the Census of the Local Universe catalog. We describe the experiment design and spectroscopic completeness from the first 16 months of operations, which have classified 754 supernovae. We present results from a systematic search for calcium-rich gap transients in the sample of 22 low-luminosity (peak absolute magnitude M > −17), hydrogen-poor events found in the experiment. We report the detection of eight new events, and constrain their volumetric rate to ≳15% ± 5% of the SN Ia rate. Combining this sample with 10 previously known events, we find a likely continuum of spectroscopic properties ranging from events with SN Ia–like features (Ca-Ia objects) to those with SN Ib/c–like features (Ca-Ib/c objects) at peak light. Within the Ca-Ib/c events, we find two populations distinguished by their red (g − r ≈ 1.5 mag) or green ( mag) colors at the r-band peak, wherein redder events show strong line blanketing features and slower light curves (similar to Ca-Ia objects), weaker He lines, and lower [Ca ii]/[O i] in the nebular phase. We find that all together the spectroscopic continuum, volumetric rates, and striking old environments are consistent with the explosive burning of He shells on low-mass white dwarfs. We suggest that Ca-Ia and red Ca-Ib/c objects arise from the double detonation of He shells, while green Ca-Ib/c objects are consistent with low-efficiency burning scenarios like detonations in low-density shells or deflagrations.

[1]  D. Kasen,et al.  Nebular Models of Sub-Chandrasekhar Mass Type Ia Supernovae: Clues to the Origin of Ca-rich Transients , 2019, The Astrophysical Journal.

[2]  K. Maguire,et al.  Observations of the low-luminosity Type Iax supernova 2019gsc: a fainter clone of SN 2008ha? , 2020, Monthly Notices of the Royal Astronomical Society.

[3]  S. Smartt,et al.  The Lowest of the Low: Discovery of SN 2019gsc and the Nature of Faint Iax Supernovae , 2020, The Astrophysical Journal.

[4]  A. Mahabal,et al.  Palomar Gattini-IR: Survey Overview, Data Processing System, On-sky Performance and First Results , 2019, Publications of the Astronomical Society of the Pacific.

[5]  A. Mahabal,et al.  The Zwicky Transient Facility Bright Transient Survey. I. Spectroscopic Classification and the Redshift Completeness of Local Galaxy Catalogs , 2019, The Astrophysical Journal.

[6]  David O. Jones,et al.  Ca hnk: The Calcium-rich Transient Supernova 2016hnk from a Helium Shell Detonation of a Sub-Chandrasekhar White Dwarf , 2019, The Astrophysical Journal.

[7]  N. Yoshida,et al.  Rapid Transients Originating from Thermonuclear Explosions in Helium White Dwarf Tidal Disruption Events , 2019, The Astrophysical Journal.

[8]  K. Maguire,et al.  The rise and fall of an extraordinary Ca-rich transient , 2019, Astronomy & Astrophysics.

[9]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[10]  A. Stark,et al.  The Most Rapidly Declining Type I Supernova 2019bkc/ATLAS19dqr , 2019, The Astrophysical Journal.

[11]  Adam A. Miller,et al.  ZTF Early Observations of Type Ia Supernovae. I. Properties of the 2018 Sample , 2019, The Astrophysical Journal.

[12]  W. Hillebrandt,et al.  Sub-Chandrasekhar progenitors favoured for type Ia supernovae: Evidence from late-time spectroscopy★. , 2019, Monthly Notices of the Royal Astronomical Society.

[13]  K. Maguire,et al.  Evidence for a Chandrasekhar-mass explosion in the Ca-strong 1991bg-like type Ia supernova 2016hnk , 2019, Astronomy & Astrophysics.

[14]  K. Maguire,et al.  SN2018kzr: A Rapidly Declining Transient from the Destruction of a White Dwarf , 2019, The Astrophysical Journal.

[15]  J. Schwab Evolutionary Models for R Coronae Borealis Stars , 2019, The Astrophysical Journal.

[16]  E. Quataert,et al.  The Progenitors of Calcium-strong Transients , 2019, The Astrophysical Journal.

[17]  Umaa Rebbapragada,et al.  Real-bogus classification for the Zwicky Transient Facility using deep learning , 2019, Monthly Notices of the Royal Astronomical Society.

[18]  A. Mahabal,et al.  Transient processing and analysis using AMPEL: alert management, photometry, and evaluation of light curves , 2019, Astronomy & Astrophysics.

[19]  E. Ofek,et al.  The volumetric rate of normal type Ia supernovae in the local Universe discovered by the Palomar Transient Factory , 2019, Monthly Notices of the Royal Astronomical Society.

[20]  D. Perley Fully Automated Reduction of Longslit Spectroscopy with the Low Resolution Imaging Spectrometer at the Keck Observatory , 2019, Publications of the Astronomical Society of the Pacific.

[21]  C. Fremling,et al.  Fully automated integral field spectrograph pipeline for the SEDMachine: pysedm , 2019, Astronomy & Astrophysics.

[22]  Marek Kowalski,et al.  simsurvey: estimating transient discovery rates for the Zwicky transient facility , 2019, Journal of Cosmology and Astroparticle Physics.

[23]  Umaa Rebbapragada,et al.  The Zwicky Transient Facility: Science Objectives , 2019, Publications of the Astronomical Society of the Pacific.

[24]  R. Itoh,et al.  The GROWTH Marshal: A Dynamic Science Portal for Time-domain Astronomy , 2019, Publications of the Astronomical Society of the Pacific.

[25]  Umaa Rebbapragada,et al.  Machine Learning for the Zwicky Transient Facility , 2019, Publications of the Astronomical Society of the Pacific.

[26]  Adam A. Miller,et al.  ZTF 18aaqeasu (SN2018byg): A Massive Helium-shell Double Detonation on a Sub-Chandrasekhar-mass White Dwarf , 2019, The Astrophysical Journal.

[27]  S. Woosley The Evolution of Massive Helium Stars, Including Mass Loss , 2019, The Astrophysical Journal.

[28]  D. Kasen,et al.  Physics of Luminous Transient Light Curves: A New Relation between Peak Time and Luminosity , 2018, The Astrophysical Journal.

[29]  Annalisa Pillepich,et al.  The IllustrisTNG simulations: public data release , 2018, Computational Astrophysics and Cosmology.

[30]  D. Kasen,et al.  Observational Predictions for Sub-Chandrasekhar Mass Explosions: Further Evidence for Multiple Progenitor Systems for Type Ia Supernovae , 2018, The Astrophysical Journal.

[31]  H. Perets,et al.  Neutron star–white dwarf mergers: early evolution, physical properties, and outcomes , 2018, Monthly Notices of the Royal Astronomical Society.

[32]  Adam D. Myers,et al.  Overview of the DESI Legacy Imaging Surveys , 2018, The Astronomical Journal.

[33]  Mansi M. Kasliwal,et al.  Census of the Local Universe (CLU) Narrowband Survey. I. Galaxy Catalogs from Preliminary Fields , 2017, The Astrophysical Journal.

[34]  Umaa Rebbapragada,et al.  The Zwicky Transient Facility: Data Processing, Products, and Archive , 2018, Publications of the Astronomical Society of the Pacific.

[35]  Matthew J. Graham,et al.  The Zwicky Transient Facility Alert Distribution System , 2018, Publications of the Astronomical Society of the Pacific.

[36]  A. Miller,et al.  A Morphological Classification Model to Identify Unresolved PanSTARRS1 Sources: Application in the ZTF Real-time Pipeline , 2018, Publications of the Astronomical Society of the Pacific.

[37]  E. Ofek,et al.  A hot and fast ultra-stripped supernova that likely formed a compact neutron star binary , 2018, Science.

[38]  J. Sollerman,et al.  Oxygen and helium in stripped-envelope supernovae , 2018, Astronomy & Astrophysics.

[39]  Matthew J. Matuszewski,et al.  iPTF 16hgs: A Double-peaked Ca-rich Gap Transient in a Metal-poor, Star-forming Dwarf Galaxy , 2018, The Astrophysical Journal.

[40]  T. A. Lister,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[41]  Rafael S. de Souza,et al.  GLADE: A galaxy catalogue for multimessenger searches in the advanced gravitational-wave detector era , 2018, Monthly Notices of the Royal Astronomical Society.

[42]  K. Maguire,et al.  The Volumetric Rate of Calcium-rich Transients in the Local Universe , 2018, 1804.03103.

[43]  H. Perets,et al.  The demographics of neutron star – white dwarf mergers , 2018, Astronomy & Astrophysics.

[44]  J. Kruijssen,et al.  An Enigmatic Population of Luminous Globular Clusters in a Galaxy Lacking Dark Matter , 2018, 1803.10240.

[45]  B. Stalder,et al.  ATLAS: A High-cadence All-sky Survey System , 2018, 1802.00879.

[46]  D. Perley,et al.  The Redshift Completeness of Local Galaxy Catalogs , 2017, The Astrophysical Journal.

[47]  Richard Walters,et al.  The SED Machine: A Robotic Spectrograph for Fast Transient Classification , 2017, 1710.02917.

[48]  D. A. García-Hernández,et al.  University of Birmingham The Fourteenth Data Release of the Sloan Digital Sky Survey: , 2017 .

[49]  V. Springel,et al.  First results from the IllustrisTNG simulations: radio haloes and magnetic fields , 2017, Monthly Notices of the Royal Astronomical Society.

[50]  E. Ramirez-Ruiz,et al.  First results from the IllustrisTNG simulations: a tale of two elements - chemical evolution of magnesium and europium , 2017, 1707.03401.

[51]  R. Kotak,et al.  Chandra X-ray constraints on the candidate Ca-rich gap transient SN 2016hnk , 2017, 1712.02799.

[52]  Jeffrey D. Crane,et al.  SDSS-V: Pioneering Panoptic Spectroscopy , 2017, 1711.03234.

[53]  Mamoru Doi,et al.  A hybrid type Ia supernova with an early flash triggered by helium-shell detonation , 2017, Nature.

[54]  M. Phillips,et al.  The Carnegie Supernova Project I: analysis of stripped-envelope supernova light curves , 2017, 1707.07614.

[55]  L. Bildsten,et al.  Electron Captures on as a Trigger for Helium Shell Detonations , 2017, 1707.05394.

[56]  A. Gal-yam,et al.  Quantitative Classification of Type I Supernovae Using Spectroscopic Features at Maximum Brightness , 2017, 1707.02543.

[57]  Igor V. Chilingarian,et al.  iPTF15eqv: Multiwavelength Exposé of a Peculiar Calcium-rich Transient , 2017, 1706.01887.

[58]  R. Abraham,et al.  Extensive Globular Cluster Systems Associated with Ultra Diffuse Galaxies in the Coma Cluster , 2017, 1705.08513.

[59]  J. DeRose,et al.  Real-time Recovery Efficiencies and Performance of the Palomar Transient Factory’s Transient Discovery Pipeline , 2017, 1704.02951.

[60]  S. Taubenberger The Extremes of Thermonuclear Supernovae , 2017, 1703.00528.

[61]  A. Jerkstrand Spectra of supernovae in the nebular phase , 2017, 1702.06702.

[62]  M. Davies,et al.  Mass transfer in white dwarf-neutron star binaries , 2017, 1702.02377.

[63]  P. Mazzali,et al.  Light-curve and spectral properties of ultrastripped core-collapse supernovae leading to binary neutron stars , 2016, 1612.02882.

[64]  W. M. Wood-Vasey,et al.  The Pan-STARRS1 Surveys , 2016, 1612.05560.

[65]  Adam A. Miller,et al.  PTF1 J082340.04+081936.5: A Hot Subdwarf B Star with a Low-mass White Dwarf Companion in an 87-minute Orbit , 2016, 1612.02019.

[66]  E. Ofek,et al.  Two New Calcium-rich Gap Transients in Group and Cluster Environments , 2016, 1612.00454.

[67]  A. Gal-yam Observational and Physical Classification of Supernovae , 2016, 1611.09353.

[68]  Tom Barclay,et al.  SNCosmo: Python library for supernova cosmology , 2016 .

[69]  David R. Silva,et al.  The DESI Experiment Part I: Science,Targeting, and Survey Design , 2016, 1611.00036.

[70]  UCSC,et al.  Formation of Tidal Captures and Gravitational Wave Inspirals in Binary-single Interactions , 2016, 1609.09114.

[71]  J. Kaastra,et al.  Origin of central abundances in the hot intra-cluster medium - II. Chemical enrichment and supernova yield models , 2016, 1608.03888.

[72]  Michael Porter,et al.  The Zwicky Transient Facility Camera , 2016, Astronomical Telescopes + Instrumentation.

[73]  R. Abraham,et al.  A HIGH STELLAR VELOCITY DISPERSION AND ∼100 GLOBULAR CLUSTERS FOR THE ULTRA-DIFFUSE GALAXY DRAGONFLY 44 , 2016, 1606.06291.

[74]  P. E. Nugent,et al.  PTF12os and iPTF13bvn. Two stripped-envelope supernovae from low-mass progenitors in NGC 5806 , 2016, 1606.03074.

[75]  R. Margutti,et al.  An Open Catalog for Supernova Data , 2016, 1605.01054.

[76]  Warren R. Brown,et al.  MOST DOUBLE DEGENERATE LOW-MASS WHITE DWARF BINARIES MERGE , 2016, 1604.04269.

[77]  B. Metzger,et al.  Time dependent models of accretion disks with nuclear burning following the tidal disruption of a white dwarf by a neutron star , 2016, 1603.07334.

[78]  A. Levan,et al.  Hubble Space Telescope observations of the host galaxies and environments of calcium-rich supernovae , 2016, 1602.08098.

[79]  Eric C. Bellm,et al.  pyraf-dbsp: Reduction pipeline for the Palomar Double Beam Spectrograph , 2016 .

[80]  Wei Zheng,et al.  Late-time spectroscopy of Type Iax Supernovae , 2016, 1601.05955.

[81]  E. Ofek,et al.  PROPER IMAGE SUBTRACTION—OPTIMAL TRANSIENT DETECTION, PHOTOMETRY, AND HYPOTHESIS TESTING , 2016, 1601.02655.

[82]  O. Graur,et al.  ANALYZING THE LARGEST SPECTROSCOPIC DATA SET OF STRIPPED SUPERNOVAE TO IMPROVE THEIR IDENTIFICATIONS AND CONSTRAIN THEIR PROGENITORS , 2015, 1510.08049.

[83]  D. Kasen,et al.  OPTICAL THERMONUCLEAR TRANSIENTS FROM TIDAL COMPRESSION OF WHITE DWARFS AS TRACERS OF THE LOW END OF THE MASSIVE BLACK HOLE MASS FUNCTION , 2015, 1508.02399.

[84]  J. Brooks,et al.  AM CANUM VENATICORUM PROGENITORS WITH HELIUM STAR DONORS AND THE RESULTANT EXPLOSIONS , 2015, 1505.05918.

[85]  N. Langer,et al.  Ultra-stripped supernovae: progenitors and fate , 2015, 1505.00270.

[86]  R. Kotak,et al.  Calcium-rich gap transients: tidal detonations of white dwarfs? , 2015, 1504.05584.

[87]  R. Foley Kinematics and Host-Galaxy Properties Suggest a Nuclear Origin for Calcium-Rich Supernova Progenitors , 2015, 1501.07607.

[88]  L. Dessart,et al.  One-dimensional non-LTE time-dependent radiative transfer of an He-detonation model and the connection to faint and fast-decaying supernovae , 2014, 1411.7397.

[89]  Zhanwen Han,et al.  A pair of CO + He white dwarfs as the progenitor of 2005E-like supernovae? , 2014, 1410.8630.

[90]  D. Hogg,et al.  WISE PHOTOMETRY FOR 400 MILLION SDSS SOURCES , 2014, 1410.7397.

[91]  K. Maguire,et al.  OGLE-2013-SN-079: A LONELY SUPERNOVA CONSISTENT WITH A HELIUM SHELL DETONATION , 2014, 1410.6473.

[92]  K. Shen,et al.  THE INITIATION AND PROPAGATION OF HELIUM DETONATIONS IN WHITE DWARF ENVELOPES , 2014, 1409.3568.

[93]  A. Levan,et al.  The progenitors of calcium-rich transients are not formed in situ ⋆ , 2014, 1408.1424.

[94]  H. Perets Origin of the Galactic 511 keV emission from positrons produced in irregular supernovae , 2014, 1407.2254.

[95]  Carnegie,et al.  A Wolf–Rayet-like progenitor of SN 2013cu from spectral observations of a stellar wind , 2014, Nature.

[96]  Enrico Ramirez-Ruiz,et al.  ILLUMINATING MASSIVE BLACK HOLES WITH WHITE DWARFS: ORBITAL DYNAMICS AND HIGH-ENERGY TRANSIENTS FROM TIDAL INTERACTIONS , 2014, 1405.1426.

[97]  G. Kauffmann,et al.  Parametrizing the stellar haloes of galaxies , 2014, 1404.2123.

[98]  Pieter van Dokkum,et al.  Ultra–Low Surface Brightness Imaging with the Dragonfly Telephoto Array , 2014, 1401.5473.

[99]  K. Maguire,et al.  PESSTO monitoring of SN 2012hn: Further heterogeneity among faint type I supernovae , 2013, 1302.2983.

[100]  E. Nakar,et al.  CONSTRAINTS ON SHALLOW 56Ni FROM THE EARLY LIGHT CURVES OF TYPE Ia SUPERNOVAE , 2012, 1211.6438.

[101]  J. Kollmeier,et al.  CALCIUM-RICH GAP TRANSIENTS: SOLVING THE CALCIUM CONUNDRUM IN THE INTRACLUSTER MEDIUM , 2013, 1401.7017.

[102]  L. Bildsten,et al.  THE EFFECTS OF CURVATURE AND EXPANSION ON HELIUM DETONATIONS ON WHITE DWARF SURFACES , 2013, 1308.4193.

[103]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[104]  Peter E. Nugent,et al.  DISCOVERY, PROGENITOR AND EARLY EVOLUTION OF A STRIPPED ENVELOPE SUPERNOVA iPTF13bvn , 2013, 1307.1470.

[105]  Z. Cano A new method for estimating the bolometric properties of Ibc supernovae , 2013, 1306.1488.

[106]  J. Telting,et al.  A progenitor binary and an ejected mass donor remnant of faint type Ia supernovae , 2013, 1304.4452.

[107]  R. Scalzo,et al.  Locations of peculiar supernovae as a diagnostic of their origins , 2013, 1304.2400.

[108]  J. Sollerman,et al.  TYPE IIb SUPERNOVA SN 2011dh: SPECTRA AND PHOTOMETRY FROM THE ULTRAVIOLET TO THE NEAR-INFRARED , 2013, 1303.5482.

[109]  J. Guillochon,et al.  CONDITIONS FOR SUCCESSFUL HELIUM DETONATIONS IN ASTROPHYSICAL ENVIRONMENTS , 2013, 1302.6235.

[110]  Volker Springel,et al.  HELIUM-IGNITED VIOLENT MERGERS AS A UNIFIED MODEL FOR NORMAL AND RAPIDLY DECLINING TYPE Ia SUPERNOVAE , 2013, 1302.2913.

[111]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL PARAMETER RESULTS , 2012, 1212.5226.

[112]  G. Nelemans,et al.  A search for the hidden population of AM CVn binaries in the Sloan Digital Sky Survey , 2012, 1211.6439.

[113]  L. Bildsten,et al.  LATERALLY PROPAGATING DETONATIONS IN THIN HELIUM LAYERS ON ACCRETING WHITE DWARFS , 2012, 1205.6517.

[114]  S. Woosley,et al.  On the nature of supernovae Ib and Ic , 2012, 1205.5349.

[115]  A. Gal-yam,et al.  WISeREP—An Interactive Supernova Data Repository , 2012, 1204.1891.

[116]  L. Ho,et al.  Berkeley Supernova Ia Program – I. Observations, data reduction and spectroscopic sample of 582 low-redshift Type Ia supernovae , 2012, 1202.2128.

[117]  P. Mazzali,et al.  How much H and He is ‘hidden’ in SNe Ib/c? – I. Low-mass objects , 2012, 1201.1506.

[118]  D. Frail,et al.  CALCIUM-RICH GAP TRANSIENTS IN THE REMOTE OUTSKIRTS OF GALAXIES , 2011, 1111.6109.

[119]  W. Hillebrandt,et al.  2D simulations of the double-detonation model for thermonuclear transients from low-mass carbon-oxygen white dwarfs , 2011, 1111.2117.

[120]  Federica B. Bianco,et al.  Supernova SN 2011fe from an exploding carbon–oxygen white dwarf star , 2011, Nature.

[121]  B. Metzger Nuclear-dominated accretion and subluminous supernovae from the merger of a white dwarf with a neutron star or black hole , 2011, 1105.6096.

[122]  M. Sullivan,et al.  THE SUBLUMINOUS AND PECULIAR TYPE Ia SUPERNOVA PTF 09dav , 2011, 1103.1797.

[123]  J. Neill,et al.  THE OLD ENVIRONMENT OF THE FAINT CALCIUM-RICH SUPERNOVA SN 2005cz , 2010, 1012.0570.

[124]  S. B. Cenko,et al.  THE FIRST SYSTEMATIC STUDY OF TYPE Ibc SUPERNOVA MULTI-BAND LIGHT CURVES , 2010, 1011.4959.

[125]  S. E. Woosley,et al.  SUB-CHANDRASEKHAR MASS MODELS FOR SUPERNOVAE , 2010, 1010.5292.

[126]  J. Truran,et al.  HELIUM SHELL DETONATIONS ON LOW-MASS WHITE DWARFS AS A POSSIBLE EXPLANATION FOR SN 2005E , 2010, 1009.3829.

[127]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[128]  Richard Walters,et al.  RAPIDLY DECAYING SUPERNOVA 2010X: A CANDIDATE “.Ia” EXPLOSION , 2010, 1009.0960.

[129]  Chris L. Fryer,et al.  SPECTRA OF TYPE IA SUPERNOVAE FROM DOUBLE DEGENERATE MERGERS , 2010, 1007.0570.

[130]  Mohan Ganeshalingam,et al.  Nearby Supernova Rates from the Lick Observatory Supernova Search. II. The Observed Luminosity Functions and Fractions of Supernovae in a Complete Sample , 2010, 1006.4612.

[131]  W. Hillebrandt,et al.  DOUBLE-DETONATION SUB-CHANDRASEKHAR SUPERNOVAE: SYNTHETIC OBSERVABLES FOR MINIMUM HELIUM SHELL MASS MODELS , 2010, 1006.4489.

[132]  W. Hillebrandt,et al.  DETONATIONS IN SUB-CHANDRASEKHAR-MASS C+O WHITE DWARFS , 2010, 1003.2917.

[133]  D. Kasen,et al.  THERMONUCLEAR.Ia SUPERNOVAE FROM HELIUM SHELL DETONATIONS: EXPLOSION MODELS AND OBSERVABLES , 2010, 1002.2258.

[134]  W. Hillebrandt,et al.  Double-detonation sub-Chandrasekhar supernovae: can minimum helium shell masses detonate the core? , 2010, 1002.2173.

[135]  E. Pian,et al.  A massive star origin for an unusual helium-rich supernova in an elliptical galaxy , 2009, Nature.

[136]  E. O. Ofek,et al.  A faint type of supernova from a white dwarf with a helium-rich companion , 2009, Nature.

[137]  J. Neill,et al.  THE LOCAL HOSTS OF TYPE Ia SUPERNOVAE , 2009, 0911.0690.

[138]  R. Foley,et al.  Optical Spectroscopy of the Somewhat Peculiar Type IIb Supernova 2001ig , 2009, 0903.4179.

[139]  L. Bildsten,et al.  GLOBULAR CLUSTERS AS TESTBEDS FOR TYPE Ia SUPERNOVAE , 2009, 0903.1104.

[140]  L. Bildsten,et al.  UNSTABLE HELIUM SHELL BURNING ON ACCRETING WHITE DWARFS , 2009, 0903.0654.

[141]  W. M. Wood-Vasey,et al.  SN 2008ha: AN EXTREMELY LOW LUMINOSITY AND EXCEPTIONALLY LOW ENERGY SUPERNOVA , 2009, 0902.2794.

[142]  A. J. Drake,et al.  FIRST RESULTS FROM THE CATALINA REAL-TIME TRANSIENT SURVEY , 2008, 0809.1394.

[143]  E. Ramirez-Ruiz,et al.  Atypical Thermonuclear Supernovae from Tidally Crushed White Dwarfs , 2007, 0712.2513.

[144]  F. Mannucci,et al.  The supernova rate in local galaxy clusters , 2007, 0710.1094.

[145]  G. Nelemans,et al.  The population of AM CVn stars from the Sloan Digital Sky Survey , 2007, 0709.2951.

[146]  Gijs Nelemans,et al.  Faint Thermonuclear Supernovae from AM Canum Venaticorum Binaries , 2007, astro-ph/0703578.

[147]  S. E. Persson,et al.  The Peculiar SN 2005hk: Do Some Type Ia Supernovae Explode as Deflagrations? , 2006, astro-ph/0611295.

[148]  Hideki Takami,et al.  Ground-based and Airborne Instrumentation for Astronomy III , 2008 .

[149]  J. Tonry,et al.  Determining the Type, Redshift, and Age of a Supernova Spectrum , 2006, astro-ph/0612512.

[150]  J. Neill,et al.  Rates and Properties of Type Ia Supernovae as a Function of Mass and Star Formation in Their Host Galaxies , 2006, astro-ph/0605455.

[151]  J. Neill,et al.  Gemini Spectroscopy of Supernovae from the Supernova Legacy Survey: Improving High-Redshift Supernova Selection and Classification , 2005, astro-ph/0509195.

[152]  G. Nelemans,et al.  Short-period AM CVn systems as optical, X-ray and gravitational-wave sources , 2003, astro-ph/0312193.

[153]  E. Bell,et al.  The Optical and Near-Infrared Properties of Galaxies. I. Luminosity and Stellar Mass Functions , 2003, astro-ph/0302543.

[154]  Caltech,et al.  SN 2002cx: The Most Peculiar Known Type Ia Supernova , 2003, astro-ph/0301428.

[155]  S. Djorgovski,et al.  The Observed Offset Distribution of Gamma-Ray Bursts from Their Host Galaxies: A Robust Clue to the Nature of the Progenitors , 2000, astro-ph/0010176.

[156]  D. Howell The Progenitors of Subluminous Type Ia Supernovae , 2001, astro-ph/0105246.

[157]  C. Kochanek,et al.  The K-Band Galaxy Luminosity Function , 2000, astro-ph/0011456.

[158]  Alexei V. Filippenko,et al.  Optical spectra of supernovae , 1997 .

[159]  Judith G. Cohen,et al.  Counts and colours of faint galaxies in the U and R bands , 1997, astro-ph/9702241.

[160]  P. Nugent,et al.  Synthetic Spectra of Hydrodynamic Models of Type Ia Supernovae , 1996, astro-ph/9612044.

[161]  William E. Harris,et al.  A Catalog of Parameters for Globular Clusters in the Milky Way , 1996 .

[162]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[163]  Geoffrey C. Clayton,et al.  THE R CORONAE BOREALIS STARS , 1996, 1206.3448.

[164]  P. Hoeflich,et al.  Explosion Models for Type IA Supernovae: A Comparison with Observed Light Curves, Distances, H 0, and Q 0 , 1996 .

[165]  W. Arnett,et al.  Explosions of Sub--Chandrasekhar Mass White Dwarfs in Two Dimensions , 1995 .

[166]  Harland W. Epps,et al.  THE KECK LOW-RESOLUTION IMAGING SPECTROMETER , 1995 .

[167]  S. Woosley,et al.  Sub-Chandrasekhar mass models for Type IA supernovae , 1994 .

[168]  M. Phillips,et al.  The Absolute Magnitudes of Type IA Supernovae , 1993 .

[169]  L. Ho,et al.  The subluminous spectroscopically peculiar type Ia supernova 1991bg in the elliptical galaxy NGC 4374 , 1992 .

[170]  L. Lucy Nonthermal excitation of helium in type Ib supernovae , 1991 .

[171]  E. Livne,et al.  Numerical simulations of off-center detonations in helium shells , 1991 .

[172]  E. Livne,et al.  Geometrical Effects in Off-Center Detonation of Helium Shells , 1990 .

[173]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[174]  R. Chevalier,et al.  Late emission from supernovae - A window on stellar nucleosynthesis , 1989 .

[175]  I. Iben,et al.  Model stars with degenerate dwarf cores and helium-burning shells: a stationary-burning approximation , 1989 .

[176]  S. Woosley,et al.  Models for Type I Supernova. I. Detonations in White Dwarfs , 1986 .

[177]  J. Wheeler,et al.  Hubble's constant and exploding carbon–oxygen white dwarf models for Type I supernovae , 1985, Nature.

[178]  James E. Gunn,et al.  AN EFFICIENT LOW RESOLUTION AND MODERATE RESOLUTION SPECTROGRAPH FOR THE HALE TELESCOPE , 1982 .

[179]  K. Nomoto Accreting white dwarf models for type 1 supernovae. II - Off-center detonation supernovae , 1982 .

[180]  W. Arnett Type I supernovae. I. Analytic solutions for the early part of the light curve , 1982 .

[181]  K. Nomoto Accreting white dwarf models for type I supernovae. I. Presupernova evolution and triggering mechanisms , 1981 .