Glass ceramic sealants belonging to BAS (BaO-Al2O3-SiO2) ternary system modified with B2O3 addition: a different approach to access the SOFC seal issue

Abstract Four compositions in the BaO–Al 2 O 3 –SiO 2 system modified with B 2 O 3 were investigated with regard to their use as glassy seals in anode supported SOFC or iT-SOFC. The glassy system studied contains varying percentages of SiO 2 , Al 2 O 3 , B 2 O 3 , and high content of BaO as modifier (67–74%-wt). Their glass transition (Tg) and maximum densification point lies between 630 and 680 °C, and 734 °C to 828 °C, respectively. The viscosities of the four glasses are situated between 10 7 to 10 9.5 Pa.s, in the sealing range (730–830 °C). Heat treatment at 850 °C, revealed crystalline phases identified as BaAl 2 Si 2 O 8 (hexacelsian) and BaSiO 3 . The thermal expansion coefficient (TEC) of the obtained glasses (8.8–10.5 ppm/K) was comparable to zirconia (YSZ) electrolyte, and shows chemical compatibility and high characteristic bond strength (up to 33 ± 7 MPa). The compositions with higher BaO content in the system studied seem to be good candidates for iT-SOFC sealant application.

[1]  E. Djurado,et al.  La0.7Sr0.3MnO3-coated SS444 alloy by dip-coating process for metallic interconnect supported Solid Oxide Fuel Cells , 2013 .

[2]  Joon-Hyung Lee,et al.  Effect of BaO content on the sintering and physical properties of BaO–B2O3–SiO2 glasses , 2006 .

[3]  R. Davey,et al.  Making Co-crystals-The utility of ternary phase diagrams , 2007 .

[4]  Mats Hillert,et al.  Phase equilibria, phase diagrams, and phase transformations , 1998 .

[5]  Joyce Smith Cooper,et al.  Taxonomies of SOFC material and manufacturing alternatives , 2005 .

[6]  Seetharama C. Deevi,et al.  A review on the status of anode materials for solid oxide fuel cells , 2003 .

[7]  J. Sanz,et al.  High barium content lead and alkaline-free glasses , 2014 .

[8]  Shahin Rahimifard,et al.  Impacts of environmental product legislation on solid oxide fuel cells , 2009 .

[9]  Nguyen Q. Minh,et al.  Solid oxide fuel cell technology—features and applications , 2004 .

[10]  W. R. Foster,et al.  Studies in the System BaO‐Al2O3‐SiO2: IV, The System Celsian‐Alumina and the Join Celsian‐Mullite , 1969 .

[11]  B. Puers,et al.  Characterization of the electrostatic bonding of silicon and Pyrex glass , 1995 .

[12]  P. Aswath,et al.  Kinetics of the hexacelsian to celsian transformation in barium aluminosilicates doped with CaO , 2001 .

[13]  W. R. Foster,et al.  Studies in the System BaO‐Al2O3−SiO2: V. The Ternary System Sanbornite‐Celsian‐Silica , 1970 .

[14]  Sung-En Lin,et al.  BaO–B2O3–SiO2–Al2O3 sealing glass for intermediate temperature solid oxide fuel cell , 2012 .

[15]  M. Mahapatra,et al.  Seal glass for solid oxide fuel cells , 2010 .

[16]  A. Durán,et al.  Puesta a punto de un horno de fibrado de laboratorio para la obtención de fibra de vidrio , 1997 .

[17]  Paul Gannon,et al.  Chromium volatility of coated and uncoated steel interconnects for SOFCs , 2006 .

[18]  Zhong-hong Jiang,et al.  The structure of glass: A phase equilibrium diagram approach , 2014 .

[19]  Chunwen Sun,et al.  Cathode materials for solid oxide fuel cells: a review , 2010 .

[20]  Edgar Dutra Zanotto,et al.  29Si MAS–NMR studies of Qn structural units in metasilicate glasses and their nucleating ability , 2000 .

[21]  Howard F. McMurdie,et al.  Phase diagrams for ceramists , 1964 .

[22]  R. Brow,et al.  Isothermal Crystallization of a Solid Oxide Fuel Cell Sealing Glass by Differential Thermal Analysis , 2008 .

[23]  Edgar Dutra Zanotto,et al.  On the sinterability of crystallizing glass powders , 2008 .

[24]  L. Hench,et al.  Mesoporous calcium silicate glasses. I. Synthesis , 2003 .

[25]  J. Fergus Electrolytes for solid oxide fuel cells , 2006 .

[26]  M. Kukizaki Large-scale production of alkali-resistant Shirasu porous glass (SPG) membranes: Influence of ZrO2 addition on crystallization and phase separation in Na2O–CaO–Al2O3–B2O3–SiO2 glasses; and alkali durability and pore morphology of the membranes , 2010 .

[27]  A. Boccaccini,et al.  Review In Situ high-temperature optical microscopy , 1999 .

[28]  J. Stebbins,et al.  Extent of intermixing among framework units in silicate glasses and melts , 2002 .

[29]  A. Olabi,et al.  Effects of zircon on porous structure and alkali durability of borosilicate glasses , 2014 .

[30]  K. J. Rao,et al.  Structural Chemistry of Glasses , 2002 .

[31]  C. Rüssel,et al.  Barium silicates as high thermal expansion seals for solid oxide fuel cells studied by high-temperat , 2011 .

[32]  R. Brow,et al.  Determining kinetic parameters for isothermal crystallization of glasses , 2007 .

[33]  M. Mahapatra,et al.  Glass-based seals for solid oxide fuel and electrolyzer cells - A review , 2010 .

[34]  Y. Liu,et al.  Protective coatings for Cr2O3-forming interconnects of solid oxide fuel cells , 2009 .

[35]  A. Korogodskaya,et al.  Structure of the BaO – Al2O3 – SiO2 System (A Review) , 2003 .

[36]  A. Kremenović,et al.  Structural investigations of celsian glass derived from Ba-LTA zeolite , 2001 .

[37]  M. Ferraris,et al.  Performance and testing of glass-ceramic sealant used to join anode-supported-electrolyte to Crofer22APU in planar solid oxide fuel cells , 2009 .

[38]  B. Revel,et al.  A new formulation of barium–strontium silicate glasses and glass-ceramics for high-temperature sealant , 2012 .

[39]  J. Stojanović,et al.  Crystallization and sinterability of glass-ceramics in the system La2O3–SrO–B2O3 , 2014 .

[40]  S. Baghshahi,et al.  Structure, phase formation, and wetting behavior of BaO–SiO2–B2O3 based glass–ceramics as sealants for solid oxide fuel cells , 2013, Ionics.

[41]  Jeffrey W. Fergus,et al.  Sealants for solid oxide fuel cells , 2005 .

[42]  A. Banerjee,et al.  Progress in material selection for solid oxide fuel cell technology: A review , 2015 .

[43]  K. Sandhage,et al.  Transformation of Ba-Al-Si precursors to celsian by high-temperature oxidation and annealing , 1995 .

[44]  Mats Hillert,et al.  Phase equilibria, phase diagrams and phase transformations : Their thermodynamic basis, second edition , 2007 .

[45]  J. Stebbins,et al.  High-resolution 29 Si NMR study of silicate and aluminosilicate glasses; the effect of network-modifying cations , 1985 .

[46]  E. M. Levin,et al.  Shape of Liquid Immiscibility Volume in the System Barium Oxide-Boric Oxide-Silica , 1958 .

[47]  M. Pascual,et al.  Crystallization and processing of SOFC sealing glasses , 2010 .

[48]  J. Ferreira,et al.  Aluminosilicate-based sealants for SOFCs and other electrochemical applications − A brief review , 2013 .

[49]  Teng Zhang,et al.  Tuning the interfacial reaction between CaO–SrO–Al2O3–B2O3–SiO2 sealing glass–ceramics and Cr-containing interconnect: Crystalline structure vs. glass structure , 2014 .

[50]  R. Basu,et al.  Microstructure and property evaluation of barium aluminosilicate glass–ceramic sealant for anode-supported solid oxide fuel cell , 2008 .

[51]  D. Herman,et al.  Wear resistance glass-ceramics with a gahnite phase obtained in CaO-MgO-ZnO-Al2O3-B2O3-SiO2 system , 2011 .

[52]  A. J. Appleby,et al.  Fuel cell technology: Status and future prospects☆☆☆ , 1996 .

[53]  Y. Mou,et al.  Solid-state NMR study of bioactive binary borosilicate glasses , 2008 .

[54]  Structure and dynamics of oxide melts and glasses: A view from multinuclear and high temperature NMR , 2007, 0710.1003.

[55]  M. Pascual,et al.  Sintering of glasses in the system RO–Al2O3–BaO–SiO2 (R=Ca, Mg, Zn) studied by hot-stage microscopy , 2004 .

[56]  C. Leonelli,et al.  The microstructure and mechanical properties of sintered celsian and strontium-celsian glass-ceramics , 1995 .

[57]  P. Aswath,et al.  Role of mineralizers on the hexacelsian to celsian transformation in the barium aluminosilicate (BAS) system , 2003 .

[58]  P. Aswath,et al.  Enhanced production of celsian barium aluminosilicates by a three-step firing technique , 2001 .