Exploring Deep Neural Networks to Retrieve Rain and Snow in High Latitudes Using Multisensor and Reanalysis Data

National Natural Science Foundation of China [91547210, 71461010701, 91437214]; National Key Research and Development Program of China [2016YFE0102400]; NASA Energy and Water Cycle Study [NNH13ZDA001N-NEWS]; NASA weather program [NNH13ZDA001NWeather]; China Scholarship Council (CSC)

[1]  Yang Hong,et al.  Documentation of multifactorial relationships between precipitation and topography of the Tibetan Plateau using spaceborne precipitation radars , 2018 .

[2]  Yang Hong,et al.  Snowfall Detectability of NASA's CloudSat: the First Cross-Investigation of its 2c-Snow-Profile Product and National Multi-Sensor Mosaic QPE (NMQ) Snowfall Data , 2014 .

[3]  Steven D. Miller,et al.  CloudSat Precipitation Profiling Algorithm—Model Description , 2010 .

[4]  Tristan S. L'Ecuyer,et al.  The retrieval of warm rain from CloudSat , 2011 .

[5]  F. Aires,et al.  Triple collocation: Beyond three estimates and separation of structural/non-structural errors , 2014 .

[6]  S. Sorooshian,et al.  Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks , 1997 .

[7]  J. Janowiak,et al.  CMORPH: A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution , 2004 .

[8]  Soroosh Sorooshian,et al.  Evaluation of PERSIANN-CCS rainfall measurement using the NAME event rain gauge network , 2007 .

[9]  Yang Hong,et al.  Similarities and Improvements of GPM Dual-Frequency Precipitation Radar (DPR) upon TRMM Precipitation Radar (PR) in Global Precipitation Rate Estimation, Type Classification and Vertical Profiling , 2017, Remote. Sens..

[10]  R. Schumer,et al.  Rain or Snow: Hydrologic Processes, Observations, Prediction, and Research Needs , 2016 .

[11]  Y. Hong,et al.  The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales , 2007 .

[12]  Ad Stoffelen,et al.  Extended triple collocation: Estimating errors and correlation coefficients with respect to an unknown target , 2014 .

[13]  Y. Hong,et al.  Accounting for spatiotemporal errors of gauges: A critical step to evaluate gridded precipitation products , 2018 .

[14]  David Hudak,et al.  Estimating snow microphysical properties using collocated multisensor observations , 2014 .

[15]  Xiao Yang,et al.  Prolongation of SMAP to Spatiotemporally Seamless Coverage of Continental U.S. Using a Deep Learning Neural Network , 2017, 1707.06611.

[16]  Ali Behrangi,et al.  Status of high‐latitude precipitation estimates from observations and reanalyses , 2016, Journal of geophysical research. Atmospheres : JGR.

[17]  D. Entekhabi,et al.  Characterization of precipitation product errors across the United States using multiplicative triple collocation , 2015 .

[18]  Y. Hong,et al.  Precipitation Estimation from Remotely Sensed Imagery Using an Artificial Neural Network Cloud Classification System , 2004 .

[19]  Kuolin Hsu,et al.  Bias adjustment of satellite‐based precipitation estimation using gauge observations: A case study in Chile , 2016 .

[20]  Eric Laloy,et al.  Training‐Image Based Geostatistical Inversion Using a Spatial Generative Adversarial Neural Network , 2017, ArXiv.

[21]  Chris Kidd,et al.  Global Precipitation Estimates from Cross-Track Passive Microwave Observations Using a Physically Based Retrieval Scheme , 2016 .

[22]  Steven D. Miller,et al.  Rainfall retrieval over the ocean with spaceborne W‐band radar , 2009 .

[23]  A. Barrett,et al.  Northern High-Latitude Precipitation as Depicted by Atmospheric Reanalyses and Satellite Retrievals , 2005 .

[24]  Norman C. Grody,et al.  A new snowfall detection algorithm over land using measurements from the Advanced Microwave Sounding Unit (AMSU) , 2003 .

[25]  Graeme L. Stephens,et al.  Snowfall‐driven mass change on the East Antarctic ice sheet , 2012 .

[26]  Yang Hong,et al.  Intercomparison of the Version-6 and Version-7 TMPA precipitation products over high and low latitudes basins with independent gauge networks: Is the newer version better in both real-time and post-real-time analysis for water resources and hydrologic extremes? , 2014 .

[27]  Jorge J. Moré,et al.  The Levenberg-Marquardt algo-rithm: Implementation and theory , 1977 .

[28]  Yang Hong,et al.  Improved modeling of snow and glacier melting by a progressive two‐stage calibration strategy with GRACE and multisource data: How snow and glacier meltwater contributes to the runoff of the Upper Brahmaputra River basin? , 2017 .

[29]  K. Taylor Summarizing multiple aspects of model performance in a single diagram , 2001 .

[30]  Toshiyuki Kurino A satellite infrared technique for estimating “deep/shallow” precipitation , 1997 .

[31]  Scott D. Hamshaw,et al.  A New Machine‐Learning Approach for Classifying Hysteresis in Suspended‐Sediment Discharge Relationships Using High‐Frequency Monitoring Data , 2018, Water Resources Research.

[32]  V. Chandrasekar,et al.  Global Precipitation Measurement Cold Season Precipitation Experiment (GCPEx): For Measurement Sake Let it Snow , 2015 .

[33]  Ralph Ferraro,et al.  A snowfall detection algorithm over land utilizing high‐frequency passive microwave measurements—Application to ATMS , 2015 .

[34]  Kuolin Hsu,et al.  Neural networks in satellite rainfall estimation , 2004 .

[35]  Jaap Schellekens,et al.  MSWEP: 3-hourly 0.25° global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data , 2016 .

[36]  Y. Hong,et al.  Developing a composite daily snow cover extent record over the Tibetan Plateau from 1981 to 2016 using multisource data , 2018, Remote Sensing of Environment.

[37]  Duo Zhang,et al.  Use Long Short-Term Memory to Enhance Internet of Things for Combined Sewer Overflow Monitoring , 2018 .

[38]  Guosheng Liu,et al.  Deriving snow cloud characteristics from CloudSat observations , 2008 .

[39]  Guosheng Liu,et al.  A Parameterization of the Probability of Snow–Rain Transition , 2015 .

[40]  Chris Kidd,et al.  Global Precipitation Measurement , 2008 .

[41]  A. Ihler,et al.  A Deep Neural Network Modeling Framework to Reduce Bias in Satellite Precipitation Products , 2016 .

[42]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[43]  T. L’Ecuyer,et al.  Characterization of video disdrometer uncertainties and impacts on estimates of snowfall rate and radar reflectivity , 2013 .

[44]  S. Sorooshian,et al.  Evaluation of PERSIANN system satellite-based estimates of tropical rainfall , 2000 .

[45]  M. Bierkens,et al.  Climate Change Will Affect the Asian Water Towers , 2010, Science.

[46]  Y. Hong,et al.  Similarities and differences between three coexisting spaceborne radars in global rainfall and snowfall estimation , 2017 .

[47]  Kuolin Hsu,et al.  Bias adjustment of infrared‐based rainfall estimation using Passive Microwave satellite rainfall data , 2017 .

[48]  Yoshua. Bengio,et al.  Learning Deep Architectures for AI , 2007, Found. Trends Mach. Learn..

[49]  A. Ihler,et al.  Precipitation Identification with Bispectral Satellite Information Using Deep Learning Approaches , 2017 .

[50]  Guosheng Liu,et al.  Detecting snowfall over land by satellite high‐frequency microwave observations: The lack of scattering signature and a statistical approach , 2013 .

[51]  Thomas H. Painter,et al.  Mountain hydrology of the western United States , 2006 .

[52]  C. Genthon,et al.  Evaluation of Antarctic snowfall in global meteorological reanalyses , 2017 .

[53]  Jefferson S. Wong,et al.  Evaluation of Integrated Multisatellite Retrievals for GPM (IMERG) over Southern Canada against Ground Precipitation Observations: A Preliminary Assessment , 2017 .

[54]  A. Hou,et al.  The Global Precipitation Measurement Mission , 2014 .

[55]  Kuolin Hsu,et al.  A Two-Stage Deep Neural Network Framework for Precipitation Estimation from Bispectral Satellite Information , 2018 .

[56]  Andrew S. Jones,et al.  Toward snowfall retrieval over land by combining satellite and in situ measurements , 2009 .

[57]  Chris Kidd,et al.  Satellite Rainfall Estimation Using a Combined Pasive Microwave and Infrared Algorithm. , 2003 .

[58]  B. Lambrigtsen,et al.  Investigating the role of multi-spectral and near surface temperature and humidity data to improve precipitation detection at high latitudes , 2015 .

[59]  Yang Hong,et al.  Cross-evaluation of ground-based, multi-satellite and reanalysis precipitation products: Applicability of the Triple Collocation method across Mainland China , 2018, Journal of Hydrology.

[60]  Jeff W. Brogden,et al.  Multi-Radar Multi-Sensor (MRMS) Quantitative Precipitation Estimation: Initial Operating Capabilities , 2016 .

[61]  Graeme L. Stephens,et al.  An Estimation-Based Precipitation Retrieval Algorithm for Attenuating Radars , 2002 .

[62]  Ali Behrangi,et al.  What does CloudSat reveal about global land precipitation detection by other spaceborne sensors? , 2014 .

[63]  Ali Behrangi,et al.  On distinguishing snowfall from rainfall using near‐surface atmospheric information: Comparative analysis, uncertainties and hydrologic importance , 2018, Quarterly Journal of the Royal Meteorological Society.

[64]  Min-Jeong Kim,et al.  A physical model to determine snowfall over land by microwave radiometry , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[65]  Y. Hong,et al.  Evaluation of GPM Day-1 IMERG and TMPA Version-7 legacy products over Mainland China at multiple spatiotemporal scales , 2015 .

[66]  Christian D. Kummerow,et al.  The Evolution of the Goddard Profiling Algorithm to a Fully Parametric Scheme , 2015 .

[67]  A. Gruber,et al.  GOES Multispectral Rainfall Algorithm (GMSRA) , 2001 .

[68]  Y. Hong,et al.  Global analysis of spatiotemporal variability in merged total water storage changes using multiple GRACE products and global hydrological models , 2017 .

[69]  A. Stoffelen Toward the true near-surface wind speed: Error modeling and calibration using triple collocation , 1998 .

[70]  J. Elliott,et al.  Machine learning algorithms for modeling groundwater level changes in agricultural regions of the U.S. , 2017 .

[71]  Kuolin Hsu,et al.  PERSIANN-MSA: A Precipitation Estimation Method from Satellite-Based Multispectral Analysis , 2009 .

[72]  Ali Behrangi,et al.  On the quantification of oceanic rainfall using spaceborne sensors , 2012 .

[73]  Bin Zhao,et al.  The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). , 2017, Journal of climate.

[74]  Dong-Bin Shin,et al.  The Evolution of the Goddard Profiling Algorithm (GPROF) for Rainfall Estimation from Passive Microwave Sensors , 2001 .