Engineering a niche supporting hematopoietic stem cell development using integrated single-cell transcriptomics

[1]  B. Hadland,et al.  Multipotent progenitors and hematopoietic stem cells arise independently from hemogenic endothelium in the mouse embryo , 2021, Cell reports.

[2]  Richard A. Anderson,et al.  Multi-layered Spatial Transcriptomics Identify Secretory Factors Promoting Human Hematopoietic Stem Cell Development , 2020, Cell stem cell.

[3]  J. Junker,et al.  Multispecies RNA tomography reveals regulators of hematopoietic stem cell birth in the embryonic aorta. , 2020, Blood.

[4]  Qin Zhu,et al.  Developmental trajectory of pre-hematopoietic stem cell formation from endothelium. , 2020, Blood.

[5]  B. Göttgens,et al.  Iterative Single-Cell Analyses Define the Transcriptome of the First Functional Hematopoietic Stem Cells , 2020, Cell reports.

[6]  F. Tang,et al.  Embryonic endothelial evolution towards first hematopoietic stem cells revealed by single-cell transcriptomic and functional analyses , 2020, Cell Research.

[7]  Simon Youssef,et al.  Quantitative modeling of synthetic gene transfer , 2011 .

[8]  F. Jamali,et al.  Single dose pharmacokinetics and bioavailability of glucosamine in the rat. , 2002, Journal of pharmacy & pharmaceutical sciences : a publication of the Canadian Society for Pharmaceutical Sciences, Societe canadienne des sciences pharmaceutiques.

[9]  L. Bolund,et al.  Single-Cell Transcriptome Atlas of Murine Endothelial Cells , 2020, Cell.

[10]  S. Teichmann,et al.  Single-cell transcriptomics identifies CD44 as a marker and regulator of endothelial to haematopoietic transition , 2020, Nature Communications.

[11]  F. Lay,et al.  MLLT3 governs human haematopoietic stem-cell self-renewal and engraftment , 2019, Nature.

[12]  Qin Zhu,et al.  Developmental trajectory of pre-hematopoietic stem cell formation from endothelium , 2019 .

[13]  Zongcheng Li,et al.  Tracing the first hematopoietic stem cell generation in human embryo by single-cell RNA sequencing , 2019, Cell Research.

[14]  M. D. de Bruijn,et al.  Blood stem cell-forming haemogenic endothelium in zebrafish derives from arterial endothelium , 2019, Nature Communications.

[15]  Hiromi Hirata,et al.  Rap1b Promotes Notch-Signal-Mediated Hematopoietic Stem Cell Development by Enhancing Integrin-Mediated Cell Adhesion. , 2019, Developmental cell.

[16]  Paul M. Gontarz,et al.  Kdm6b Regulates Context-Dependent Hematopoietic Stem Cell Self-Renewal and Leukemogenesis , 2019, Leukemia.

[17]  J. Ajani,et al.  iTALK: an R Package to Characterize and Illustrate Intercellular Communication , 2019, bioRxiv.

[18]  Long Gao,et al.  RUNX1 and the endothelial origin of blood. , 2018, Experimental hematology.

[19]  V. Kouskoff,et al.  Single-cell transcriptomics reveal the dynamic of haematopoietic stem cell production in the aorta , 2018, Nature Communications.

[20]  B. Göttgens,et al.  Single-cell transcriptional profiling: a window into embryonic cell-type specification , 2018, Nature Reviews Molecular Cell Biology.

[21]  J. Thomson,et al.  Activation of the Arterial Program Drives Development of Definitive Hemogenic Endothelium with Lymphoid Potential. , 2018, Cell reports.

[22]  B. Hadland,et al.  Clonal Analysis of Embryonic Hematopoietic Stem Cell Precursors Using Single Cell Index Sorting Combined with Endothelial Cell Niche Co-culture. , 2018, Journal of visualized experiments : JoVE.

[23]  L. Zon,et al.  NOTCH signaling specifies arterial-type definitive hemogenic endothelium from human pluripotent stem cells , 2018, Nature Communications.

[24]  B. Göttgens,et al.  Single-cell transcriptional profiling: a window into embryonic cell-type specification , 2018, Nature Reviews Molecular Cell Biology.

[25]  Y. Takada,et al.  Stromal cell-derived factor-1 (CXCL12) activates integrins by direct binding to an allosteric ligand-binding site (site 2) of integrins without CXCR4. , 2018, The Biochemical journal.

[26]  P. Woll,et al.  Hierarchically related lineage-restricted fates of multipotent haematopoietic stem cells , 2018, Nature.

[27]  B. Hadland,et al.  Many layers of embryonic hematopoiesis: new insights into B-cell ontogeny and the origin of hematopoietic stem cells. , 2017, Experimental hematology.

[28]  J. Carroll,et al.  Correction: SoxF factors induce Notch1 expression via direct transcriptional regulation during early arterial development. Development doi: 10.1242/dev.146241 , 2017, Development.

[29]  Hannah A. Pliner,et al.  Reversed graph embedding resolves complex single-cell trajectories , 2017, Nature Methods.

[30]  R. Baron,et al.  ZFP521 regulates murine hematopoietic stem cell function and facilitates MLL-AF9 leukemogenesis in mouse and human cells. , 2017, Blood.

[31]  J. Carroll,et al.  SoxF factors induce Notch1 expression via direct transcriptional regulation during early arterial development , 2017, Development.

[32]  B. Hadland,et al.  A Common Origin for B-1a and B-2 Lymphocytes in Clonal Pre- Hematopoietic Stem Cells , 2017, Stem cell reports.

[33]  Kiyomi Tsuji-Tamura,et al.  CXCR4 Signaling Negatively Modulates the Bipotential State of Hemogenic Endothelial Cells Derived from Embryonic Stem Cells by Attenuating the Endothelial Potential , 2016, Stem cells.

[34]  A. Waskiewicz,et al.  Somite-Derived Retinoic Acid Regulates Zebrafish Hematopoietic Stem Cell Formation , 2016, PloS one.

[35]  E. Stanley,et al.  Differentiation of human embryonic stem cells to HOXA+ hemogenic vasculature that resembles the aorta-gonad-mesonephros , 2016, Nature Biotechnology.

[36]  G. Pan,et al.  Generation and Analysis of GATA2w/eGFP Human ESCs Reveal ITGB3/CD61 as a Reliable Marker for Defining Hemogenic Endothelial Cells during Hematopoiesis , 2016, Stem cell reports.

[37]  R. Kageyama,et al.  Developing HSCs become Notch independent by the end of maturation in the AGM region. , 2016, Blood.

[38]  L. Mirny,et al.  Hematopoietic Stem Cells Are the Major Source of Multilineage Hematopoiesis in Adult Animals. , 2016, Immunity.

[39]  C. Porcher,et al.  EphrinB2 regulates the emergence of a hemogenic endothelium from the aorta , 2016, Scientific Reports.

[40]  F. Tang,et al.  Tracing haematopoietic stem cell formation at single-cell resolution , 2016, Nature.

[41]  J. Zack,et al.  Medial HOXA genes demarcate haematopoietic stem cell fate during human development , 2016, Nature Cell Biology.

[42]  Derrick J. Rossi,et al.  Insulin-like growth factor 2 modulates murine hematopoietic stem cell maintenance through upregulation of p57. , 2016, Experimental hematology.

[43]  S. Rybtsov,et al.  Concealed expansion of immature precursors underpins acute burst of adult HSC activity in foetal liver , 2016, Development.

[44]  Guanghui Liu,et al.  SIRT6 Controls Hematopoietic Stem Cell Homeostasis through Epigenetic Regulation of Wnt Signaling. , 2016, Cell stem cell.

[45]  S. Rybtsov,et al.  Inductive interactions mediated by interplay of asymmetric signalling underlie development of adult haematopoietic stem cells , 2016, Nature Communications.

[46]  N. López-Bigas,et al.  Notch signal strength controls cell fate in the haemogenic endothelium , 2015, Nature Communications.

[47]  F. Liu,et al.  G protein-coupled receptor 183 facilitates endothelial-to-hematopoietic transition via Notch1 inhibition , 2015, Cell Research.

[48]  Zhiyu Zhao,et al.  Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal , 2015, Nature.

[49]  H. Bonig,et al.  Concise Review: CXCR4/CXCL12 Signaling in Immature Hematopoiesis—Lessons From Pharmacological and Genetic Models , 2015, Stem cells.

[50]  W. Goessling,et al.  Cannabinoid Receptor‐2 Regulates Embryonic Hematopoietic Stem Cell Development via Prostaglandin E2 and P‐Selectin Activity , 2015, Stem cells.

[51]  Hui Yu,et al.  Repression of arterial genes in hemogenic endothelium is sufficient for haematopoietic fate acquisition , 2015, Nature Communications.

[52]  Piero Carninci,et al.  A draft network of ligand–receptor-mediated multicellular signalling in human , 2015, Nature Communications.

[53]  Fabian J. Theis,et al.  Combined Single-Cell Functional and Gene Expression Analysis Resolves Heterogeneity within Stem Cell Populations , 2015, Cell stem cell.

[54]  B. Hadland,et al.  Endothelium and NOTCH specify and amplify aorta-gonad-mesonephros-derived hematopoietic stem cells. , 2015, The Journal of clinical investigation.

[55]  Matthew C. Canver,et al.  Angiopoietin-like proteins stimulate HSPC development through interaction with notch receptor signaling , 2015, eLife.

[56]  N. López-Bigas,et al.  Identification of Cdca7 as a novel Notch transcriptional target involved in hematopoietic stem cell emergence , 2014, The Journal of experimental medicine.

[57]  D. Traver,et al.  Discrete Notch signaling requirements in the specification of hematopoietic stem cells , 2014, The EMBO journal.

[58]  I. Weissman,et al.  Upregulation of CD11A on Hematopoietic Stem Cells Denotes the Loss of Long-Term Reconstitution Potential , 2014, Stem cell reports.

[59]  Roland Eils,et al.  circlize implements and enhances circular visualization in R , 2014, Bioinform..

[60]  O. Nerushev,et al.  Tracing the Origin of the HSC Hierarchy Reveals an SCF-Dependent, IL-3-Independent CD43− Embryonic Precursor , 2014, Stem cell reports.

[61]  R. Sutherland,et al.  Haematopoietic stem cell induction by somite-derived endothelial cells controlled by meox1 , 2014, Nature.

[62]  Derrick J. Rossi,et al.  Fgd5 identifies hematopoietic stem cells in the murine bone marrow , 2014, The Journal of experimental medicine.

[63]  A. Bergman,et al.  Megakaryocytes regulate hematopoietic stem cell quiescence via Cxcl4 secretion , 2013, Nature Medicine.

[64]  A. Bigas,et al.  Notch and Wnt signaling in the emergence of hematopoietic stem cells. , 2013, Blood cells, molecules & diseases.

[65]  M. Corada,et al.  Sox17 is indispensable for acquisition and maintenance of arterial identity , 2013, Nature Communications.

[66]  Sabrina Gordon-Keylock,et al.  Mouse extraembryonic arterial vessels harbor precursors capable of maturing into definitive HSCs. , 2013, Blood.

[67]  I. Macaulay,et al.  Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy , 2013, Nature.

[68]  N. Speck,et al.  Gata2 is required for HSC generation and survival , 2013, The Journal of experimental medicine.

[69]  Y. Yashiro‐Ohtani,et al.  The expression of Sox17 identifies and regulates haemogenic endothelium , 2013, Nature Cell Biology.

[70]  J. Boisset,et al.  Integrin αIIb (CD41) plays a role in the maintenance of hematopoietic stem cell activity in the mouse embryonic aorta , 2013, Biology Open.

[71]  Elaine Dzierzak,et al.  Hes repressors are essential regulators of hematopoietic stem cell development downstream of Notch signaling , 2013, The Journal of experimental medicine.

[72]  T. Kadowaki,et al.  Evi1 is essential for hematopoietic stem cell self-renewal, and its expression marks hematopoietic cells with long-term multilineage repopulating activity , 2011, The Journal of experimental medicine.

[73]  Akinobu Matsumoto,et al.  p57 is required for quiescence and maintenance of adult hematopoietic stem cells. , 2011, Cell stem cell.

[74]  J. Frampton,et al.  Hierarchical organization and early hematopoietic specification of the developing HSC lineage in the AGM region , 2011, The Journal of experimental medicine.

[75]  I. Bernstein,et al.  Notch2 governs the rate of generation of mouse long- and short-term repopulating stem cells. , 2011, The Journal of clinical investigation.

[76]  W. Alexander,et al.  ERG dependence distinguishes developmental control of hematopoietic stem cell maintenance from hematopoietic specification. , 2011, Genes & development.

[77]  岩崎 博子 Endothelial protein C receptor-expressing hematopoietic stem cells reside in the perisinusoidal niche in fetal liver , 2011 .

[78]  S. Rafii,et al.  Angiocrine factors from Akt-activated endothelial cells balance self-renewal and differentiation of haematopoietic stem cells , 2010, Nature Cell Biology.

[79]  Elaine Dzierzak,et al.  Three-dimensional cartography of hematopoietic clusters in the vasculature of whole mouse embryos , 2010, Development.

[80]  T. Suda,et al.  Endothelial protein C receptor-expressing hematopoietic stem cells reside in the perisinusoidal niche in fetal liver. , 2010, Blood.

[81]  J. Chi,et al.  Pleiotrophin regulates the expansion and regeneration of hematopoietic stem cells , 2010, Nature Medicine.

[82]  Ian A. White,et al.  Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells. , 2010, Cell stem cell.

[83]  K. Ottersbach,et al.  Ventral embryonic tissues and Hedgehog proteins induce early AGM hematopoietic stem cell development , 2009, Development.

[84]  D. Kimelman,et al.  Hedgehog and Bmp polarize hematopoietic stem cell emergence in the zebrafish dorsal aorta. , 2009, Developmental cell.

[85]  L. Zon,et al.  A genetic screen in zebrafish defines a hierarchical network of pathways required for hematopoietic stem cell emergence. , 2009, Blood.

[86]  K. Moore,et al.  Extensive hematopoietic stem cell generation in the AGM region via maturation of VE-cadherin+CD45+ pre-definitive HSCs. , 2008, Cell stem cell.

[87]  Mark J. Murphy,et al.  Pbx1 regulates self-renewal of long-term hematopoietic stem cells by maintaining their quiescence. , 2008, Cell stem cell.

[88]  Yoon-Chi Han,et al.  CXCR4 is required for the quiescence of primitive hematopoietic cells , 2008, The Journal of experimental medicine.

[89]  L. Zon,et al.  BMP and Wnt specify hematopoietic fate by activation of the Cdx-Hox pathway. , 2008, Cell stem cell.

[90]  David L Waning,et al.  Cul4A is required for hematopoietic stem-cell engraftment and self-renewal. , 2007, Blood.

[91]  A. Medvinsky,et al.  Functional identification of the hematopoietic stem cell niche in the ventral domain of the embryonic dorsal aorta , 2007, Proceedings of the National Academy of Sciences.

[92]  C. Esmon,et al.  Endothelial protein C receptor (CD201) explicitly identifies hematopoietic stem cells in murine bone marrow. , 2006, Blood.

[93]  H. Broxmeyer,et al.  SDF‐1/CXCL12 Enhances Survival and Chemotaxis of Murine Embryonic Stem Cells and Production of Primitive and Definitive Hematopoietic Progenitor Cells , 2005, Stem cells.

[94]  A. M. Morrison,et al.  Progressive divergence of definitive haematopoietic stem cells from the endothelial compartment does not depend on contact with the foetal liver , 2005, Development.

[95]  S. Morrison,et al.  Supplemental Experimental Procedures , 2022 .

[96]  J. L. de la Pompa,et al.  RBPjκ-dependent Notch function regulates Gata2 and is essential for the formation of intra-embryonic hematopoietic cells , 2005 .

[97]  M. Yoder,et al.  Endothelial cells in the early murine yolk sac give rise to CD41-expressing hematopoietic cells. , 2005, Stem cells and development.

[98]  G. Weinmaster,et al.  Fringe glycosyltransferases differentially modulate Notch1 proteolysis induced by Delta1 and Jagged1. , 2004, Molecular biology of the cell.

[99]  B. Hadland,et al.  A requirement for Notch1 distinguishes 2 phases of definitive hematopoiesis during development. , 2004, Blood.

[100]  Manfred Gessler,et al.  The Notch target genes Hey1 and Hey2 are required for embryonic vascular development. , 2004, Genes & development.

[101]  H. Lodish,et al.  Insulin-like growth factor 2 expressed in a novel fetal liver cell population is a growth factor for hematopoietic stem cells. , 2004, Blood.

[102]  S. Orkin,et al.  Expression of CD41 marks the initiation of definitive hematopoiesis in the mouse embryo. , 2003, Blood.

[103]  A. M. Morrison,et al.  Quantitative developmental anatomy of definitive haematopoietic stem cells/long-term repopulating units (HSC/RUs): role of the aorta-gonad-mesonephros (AGM) region and the yolk sac in colonisation of the mouse embryonic liver. , 2002, Development.

[104]  R. Herbst,et al.  Quantitative developmental anatomy of definitive haematopoietic stem cells / long-term repopulating units ( HSC / RUs ) : role of the aorta-gonad-mesonephros ( AGM ) region and the yolk sac in colonisation of the mouse embryonic liver , 2002 .

[105]  I. Bernstein,et al.  Immobilization of Notch ligand, Delta-1, is required for induction of notch signaling. , 2000, Journal of cell science.

[106]  R. Alon,et al.  The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice. , 2000, Blood.

[107]  S. Akimov,et al.  Tissue Transglutaminase Is an Integrin-Binding Adhesion Coreceptor for Fibronectin , 2000, The Journal of cell biology.

[108]  R. Alon,et al.  The chemokine SDF-1 stimulates integrin-mediated arrest of CD34(+) cells on vascular endothelium under shear flow. , 1999, The Journal of clinical investigation.

[109]  M. Yoder,et al.  In vivo repopulating hematopoietic stem cells are present in the murine yolk sac at day 9.0 postcoitus. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[110]  A. Medvinsky,et al.  Definitive Hematopoiesis Is Autonomously Initiated by the AGM Region , 1996, Cell.

[111]  J. Strouboulis,et al.  Development of hematopoietic stem cell activity in the mouse embryo. , 1994, Immunity.