FAST APPROACH TO THE TRACY-WIDOM LAW AT THE EDGE OF GOE AND GUE.

We study the rate of convergence for the largest eigenvalue distributions in the Gaussian unitary and orthogonal ensembles to their Tracy-Widom limits. We show that one can achieve an O(N-2/3) rate with particular choices of the centering and scaling constants. The arguments here also shed light on more complicated cases of Laguerre and Jacobi ensembles, in both unitary and orthogonal versions. Numerical work shows that the suggested constants yield reasonable approximations even for suprisingly small values of N.

[1]  Leonard N. Choup Edgeworth expansion of the largest eigenvalue distribution function of Gaussian unitary ensemble revisited , 2007, 0711.4206.

[2]  Matrix kernels for the Gaussian orthogonal and symplectic ensembles , 2004, math-ph/0405035.

[3]  Edgeworth Expansion of the Largest Eigenvalue Distribution Function of GUE and LUE , 2006, math/0603639.

[4]  Leonard N. Choup Edgeworth Expansion of the Largest Eigenvalue Distribution Function of GOE , 2008, 0801.2620.

[5]  C. Tracy,et al.  Mathematical Physics © Springer-Verlag 1996 On Orthogonal and Symplectic Matrix Ensembles , 1995 .

[6]  F. Olver Asymptotics and Special Functions , 1974 .

[7]  Shi Wei A globally uniform asymptotic expansion of the hermite polynomials , 2008 .

[8]  Iain M Johnstone,et al.  APPROXIMATE NULL DISTRIBUTION OF THE LARGEST ROOT IN MULTIVARIATE ANALYSIS. , 2010, The annals of applied statistics.

[9]  P. Forrester,et al.  Classical Skew Orthogonal Polynomials and Random Matrices , 1999, solv-int/9907001.

[10]  Lun Zhang,et al.  Global asymptotics of Hermite polynomials via Riemann-Hilbert approach , 2007 .

[11]  Folkmar Bornemann,et al.  On the Numerical Evaluation of Distributions in Random Matrix Theory: A Review , 2009, 0904.1581.

[12]  X.-S. Wang,et al.  Asymptotics of Orthogonal Polynomials via Recurrence Relations , 2011, 1101.4371.

[13]  Craig A. Tracy,et al.  Correlation Functions, Cluster Functions, and Spacing Distributions for Random Matrices , 1998 .

[14]  P. Forrester,et al.  A Method to Calculate Correlation Functions for β=1 Random Matrices of Odd Size , 2008, 0809.5116.

[15]  A. Soshnikov A Note on Universality of the Distribution of the Largest Eigenvalues in Certain Sample Covariance Matrices , 2001, math/0104113.

[16]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[17]  E Seiler,et al.  An inequality among determinants. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[18]  T. Tao,et al.  Random Matrices: Universality of Local Eigenvalue Statistics up to the Edge , 2009, 0908.1982.

[19]  Ofer Zeitouni,et al.  An Introduction to Random Matrices: Introduction , 2009 .

[20]  C. Sinclair Correlation Functions for β=1 Ensembles of Matrices of Odd Size , 2008, 0811.1276.

[21]  Noureddine El Karoui A rate of convergence result for the largest eigenvalue of complex white Wishart matrices , 2004, math/0409610.

[22]  C. Tracy,et al.  Introduction to Random Matrices , 1992, hep-th/9210073.

[23]  I. Johnstone MULTIVARIATE ANALYSIS AND JACOBI ENSEMBLES: LARGEST EIGENVALUE, TRACY-WIDOM LIMITS AND RATES OF CONVERGENCE. , 2008, Annals of statistics.

[24]  S. Péché Universality results for largest eigenvalues of some sample covariance matrix ensembles , 2007, 0705.1701.

[25]  Zongming Ma,et al.  Accuracy of the Tracy–Widom limits for the extreme eigenvalues in white Wishart matrices , 2012, 1203.0839.