FAST APPROACH TO THE TRACY-WIDOM LAW AT THE EDGE OF GOE AND GUE.
暂无分享,去创建一个
[1] Leonard N. Choup. Edgeworth expansion of the largest eigenvalue distribution function of Gaussian unitary ensemble revisited , 2007, 0711.4206.
[2] Matrix kernels for the Gaussian orthogonal and symplectic ensembles , 2004, math-ph/0405035.
[3] Edgeworth Expansion of the Largest Eigenvalue Distribution Function of GUE and LUE , 2006, math/0603639.
[4] Leonard N. Choup. Edgeworth Expansion of the Largest Eigenvalue Distribution Function of GOE , 2008, 0801.2620.
[5] C. Tracy,et al. Mathematical Physics © Springer-Verlag 1996 On Orthogonal and Symplectic Matrix Ensembles , 1995 .
[6] F. Olver. Asymptotics and Special Functions , 1974 .
[7] Shi Wei. A globally uniform asymptotic expansion of the hermite polynomials , 2008 .
[8] Iain M Johnstone,et al. APPROXIMATE NULL DISTRIBUTION OF THE LARGEST ROOT IN MULTIVARIATE ANALYSIS. , 2010, The annals of applied statistics.
[9] P. Forrester,et al. Classical Skew Orthogonal Polynomials and Random Matrices , 1999, solv-int/9907001.
[10] Lun Zhang,et al. Global asymptotics of Hermite polynomials via Riemann-Hilbert approach , 2007 .
[11] Folkmar Bornemann,et al. On the Numerical Evaluation of Distributions in Random Matrix Theory: A Review , 2009, 0904.1581.
[12] X.-S. Wang,et al. Asymptotics of Orthogonal Polynomials via Recurrence Relations , 2011, 1101.4371.
[13] Craig A. Tracy,et al. Correlation Functions, Cluster Functions, and Spacing Distributions for Random Matrices , 1998 .
[14] P. Forrester,et al. A Method to Calculate Correlation Functions for β=1 Random Matrices of Odd Size , 2008, 0809.5116.
[15] A. Soshnikov. A Note on Universality of the Distribution of the Largest Eigenvalues in Certain Sample Covariance Matrices , 2001, math/0104113.
[16] Rene F. Swarttouw,et al. Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.
[17] E Seiler,et al. An inequality among determinants. , 1975, Proceedings of the National Academy of Sciences of the United States of America.
[18] T. Tao,et al. Random Matrices: Universality of Local Eigenvalue Statistics up to the Edge , 2009, 0908.1982.
[19] Ofer Zeitouni,et al. An Introduction to Random Matrices: Introduction , 2009 .
[20] C. Sinclair. Correlation Functions for β=1 Ensembles of Matrices of Odd Size , 2008, 0811.1276.
[21] Noureddine El Karoui. A rate of convergence result for the largest eigenvalue of complex white Wishart matrices , 2004, math/0409610.
[22] C. Tracy,et al. Introduction to Random Matrices , 1992, hep-th/9210073.
[23] I. Johnstone. MULTIVARIATE ANALYSIS AND JACOBI ENSEMBLES: LARGEST EIGENVALUE, TRACY-WIDOM LIMITS AND RATES OF CONVERGENCE. , 2008, Annals of statistics.
[24] S. Péché. Universality results for largest eigenvalues of some sample covariance matrix ensembles , 2007, 0705.1701.
[25] Zongming Ma,et al. Accuracy of the Tracy–Widom limits for the extreme eigenvalues in white Wishart matrices , 2012, 1203.0839.