Structural analysis of nucleic acid aptamers.

Solution structures and hydrogen exchange characteristics of ligand-RNA aptamer and ligand-DNA aptamer complexes have been solved within the past year. The ligands range from cofactors to amino acids, nucleotides, aminoglycoside antibiotics and peptides that are targeted by the nucleic acid aptamers with high specificity and affinity. The structural and dynamics studies provide insights into the principles, patterns and diversity associated with nucleic acid architecture, molecular recognition and the adaptive binding that takes place upon complex formation. These new results provide opportunities for structure-based drug design strategies relevant to therapeutic intervention.

[1]  Peter G. Schultz,et al.  Porphyrin metalation catalyzed by a small RNA molecule , 1996 .

[2]  A. Ellington,et al.  In vitro selection of RNA lectins: using combinatorial chemistry to interpret ribozyme evolution. , 1995, Chemistry & biology.

[3]  Enrichment for RNA molecules that bind a Diels-Alder transition state analog. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[4]  T. Fitzwater,et al.  Potent 2′-amino-, and 2′-fluoro-2′- deoxyribonucleotide RNA inhibitors of keratinocyte growth factor , 1997, Nature Biotechnology.

[5]  A. Pardi Multidimensional heteronuclear NMR experiments for structure determination of isotopically labeled RNA. , 1995, Methods in enzymology.

[6]  T. Steitz,et al.  Structure of E. coli glutaminyl-tRNA synthetase complexed with tRNA(Gln) and ATP at 2.8 A resolution. , 1989, Science.

[7]  J. Feigon,et al.  Solution structure of an ATP-binding RNA aptamer reveals a novel fold. , 1997, RNA.

[8]  J. Szostak,et al.  A DNA aptamer that binds adenosine and ATP. , 1995, Biochemistry.

[9]  K. Flaherty,et al.  Model for an RNA tertiary interaction from the structure of an intermolecular complex between a GAAA tetraloop and an RNA helix , 1994, Nature.

[10]  J. Karn,et al.  RNA recognition by the human immunodeficiency virus Tat and Rev proteins. , 1993, Trends in biochemical sciences.

[11]  M. Guéron,et al.  Studies of base pair kinetics by NMR measurement of proton exchange. , 1995, Methods in enzymology.

[12]  A. Tulinsky,et al.  The structure of alpha-thrombin inhibited by a 15-mer single-stranded DNA aptamer. , 1994, The Journal of biological chemistry.

[13]  G. F. Joyce,et al.  In vitro evolution of nucleic acids. , 1994, Current opinion in structural biology.

[14]  P. Burgstaller,et al.  Structural probing and damage selection of citrulline- and arginine-specific RNA aptamers identify base positions required for binding. , 1995, Nucleic acids research.

[15]  J. Feigon,et al.  Thrombin-binding DNA aptamer forms a unimolecular quadruplex structure in solution. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[16]  D. Crothers,et al.  Major groove accessibility of RNA. , 1993, Science.

[17]  L. Gold,et al.  Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. , 1990, Science.

[18]  J. Szostak,et al.  Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures , 1992, Nature.

[19]  J. Puglisi,et al.  RNA sequence determinants for aminoglycoside binding to an A-site rRNA model oligonucleotide. , 1996, Journal of molecular biology.

[20]  Volker A. Erdmann,et al.  Mirror-design of L-oligonucleotide ligands binding to L-arginine , 1996, Nature Biotechnology.

[21]  A. Frankel,et al.  Identification of two novel arginine binding DNAs. , 1995, The EMBO journal.

[22]  J R Lorsch,et al.  Chance and necessity in the selection of nucleic acid catalysts. , 1996, Accounts of chemical research.

[23]  M Yarus,et al.  Diversity of oligonucleotide functions. , 1995, Annual review of biochemistry.

[24]  P. Moore Determination of RNA Conformation by Nuclear Magnetic Resonance , 1995 .

[25]  D. Patel,et al.  Imino proton exchange and base-pair kinetics in the AMP-RNA aptamer complex. , 1997, Journal of molecular biology.

[26]  C. Tuerk,et al.  Characterization of an in vitro-selected RNA ligand to the HIV-1 Rev protein. , 1994, Journal of molecular biology.

[27]  G. Varani,et al.  RNA structure and NMR spectroscopy , 1991, Quarterly Reviews of Biophysics.

[28]  P Allen,et al.  A specific RNA structural motif mediates high affinity binding by the HIV-1 nucleocapsid protein (NCp7). , 1996, Virology.

[29]  J W Szostak,et al.  RNA aptamers that bind flavin and nicotinamide redox cofactors. , 1995, Journal of the American Chemical Society.

[30]  Patel,et al.  Molecular recognition in the bovine immunodeficiency virus Tat peptide-TAR RNA complex. , 1995, Chemistry & biology.

[31]  J. Puglisi,et al.  Solution Structure of a Bovine Immunodeficiency Virus Tat-TAR Peptide-RNA Complex , 1995, Science.

[32]  A. Frankel,et al.  Costabilization of peptide and RNA structure in an HIV Rev peptide-RRE complex. , 1994, Biochemistry.

[33]  C R Woese,et al.  Architecture of ribosomal RNA: constraints on the sequence of "tetra-loops". , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[34]  J. Puglisi,et al.  Role of RNA structure in arginine recognition of TAR RNA. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[35]  E. Vermaas,et al.  Selection of single-stranded DNA molecules that bind and inhibit human thrombin , 1992, Nature.

[36]  J. Feigon,et al.  Heteronuclear techniques in NMR studies of RNA and DNA , 1994 .

[37]  C. Wilson,et al.  Role REVersal: understanding how RRE RNA binds its peptide ligand. , 1997, Structure.

[38]  V. Erdmann,et al.  Mirror-image RNA that binds D-adenosine , 1996, Nature Biotechnology.

[39]  D. Rio,et al.  RNA-protein interactions , 1991, Cell.

[40]  J. Davies,et al.  Antibiotic inhibition of group I ribozyme function , 1991, Nature.

[41]  P. Burgstaller,et al.  RNA aptamers that bind L-arginine with sub-micromolar dissociation constants and high enantioselectivity. , 1996, Nucleic acids research.

[42]  J. Feigon,et al.  Through-bond correlation of imino and aromatic resonances in 13C-,15N-labeled RNA via heteronuclear TOCSY , 1996, Journal of biomolecular NMR.

[43]  H. Heus,et al.  Structural features that give rise to the unusual stability of RNA hairpins containing GNRA loops. , 1991, Science.

[44]  Y. Lin,et al.  Modified RNA sequence pools for in vitro selection. , 1994, Nucleic acids research.

[45]  K. Sharp,et al.  Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons , 1991, Proteins.

[46]  G. Varani,et al.  Specificity of ribonucleoprotein interaction determined by RNA folding during complex formation , 1996, Nature.

[47]  A. Pardi,et al.  Preparation of 13C and 15N labelled RNAs for heteronuclear multi-dimensional NMR studies. , 1992, Nucleic acids research.

[48]  D. Lazinski,et al.  Sequence-specific recognition of RNA hairpins by bacteriophage antiterminators requires a conserved arginine-rich motif , 1989, Cell.

[49]  S. Swaminathan,et al.  A DNA aptamer which binds to and inhibits thrombin exhibits a new structural motif for DNA. , 1993, Biochemistry.

[50]  J. Puglisi,et al.  Structure of the A Site of Escherichia coli 16S Ribosomal RNA Complexed with an Aminoglycoside Antibiotic , 1996, Science.

[51]  Harry F. Noller,et al.  Interaction of antibiotics with functional sites in 16S ribosomal RNA , 1987, Nature.

[52]  D. Draper,et al.  Structure of a hexanucleotide RNA hairpin loop conserved in ribosomal RNAs. , 1996, Journal of molecular biology.

[53]  Jack W. Szostak,et al.  An RNA motif that binds ATP , 1993, Nature.

[54]  N. Janjić,et al.  Nuclease-resistant nucleic acid ligands to vascular permeability factor/vascular endothelial growth factor. , 1995, Chemistry & biology.

[55]  K. Flaherty,et al.  Three-dimensional structure of a hammerhead ribozyme , 1994, Nature.

[56]  D. Wemmer New features in RNA recognition: a Tat-TAR complex. , 1996, Chemistry & biology.

[57]  B. Clark,et al.  Structure of yeast phenylalanine tRNA at 3 Å resolution , 1974, Nature.

[58]  D. Patel,et al.  Encapsulating an amino acid in a DNA fold , 1996, Nature Structural Biology.

[59]  L. Kay,et al.  α Helix-RNA Major Groove Recognition in an HIV-1 Rev Peptide-RRE RNA Complex , 1996, Science.

[60]  R. Rando,et al.  Specific binding of aminoglycoside antibiotics to RNA. , 1995, Chemistry & biology.

[61]  A. Ellington,et al.  In vitro selection of aptamers: the dearth of pure reason. , 1996, Current opinion in structural biology.

[62]  Gerald F. Joyce,et al.  Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA , 1990, Nature.

[63]  M. Famulok,et al.  The Ca2+ Ion as a Cofactor for a Novel RNA-Cleaving Deoxyribozyme† , 1996 .

[64]  Nobutoshi Ito,et al.  Crystal structure at 1.92 Å resolution of the RNA-binding domain of the U1A spliceosomal protein complexed with an RNA hairpin , 1994, Nature.

[65]  M. Rosbash,et al.  A high affinity binding site for the HIV-1 nucleocapsid protein. , 1997, Nucleic acids research.

[66]  P. Burgstaller,et al.  Isolation of RNA Aptamers for Biological Cofactors by In Vitro Selection , 1994 .

[67]  J. Feigon,et al.  Aptamer structures from A to ζ , 1996 .

[68]  J. Szostak,et al.  In vitro selection of RNA aptamers specific for cyanocobalamin. , 1994, Biochemistry.

[69]  D. Patel,et al.  RNA folding topology and intermolecular contacts in the AMP-RNA aptamer complex. , 1996, Biochemistry.

[70]  D. Patel,et al.  Saccharide-RNA recognition in an aminoglycoside antibiotic-RNA aptamer complex. , 1997, Chemistry & biology.

[71]  O. Uhlenbeck,et al.  Neomycin inhibition of the hammerhead ribozyme involves ionic interactions. , 1995, Biochemistry.

[72]  J. Puglisi,et al.  Preparation of isotopically labeled ribonucleotides for multidimensional NMR spectroscopy of RNA. , 1992, Nucleic acids research.

[73]  D. Moras,et al.  Yeast tRNAAsp recognition by its cognate class II aminoacyl-tRNA synthetase , 1993, Nature.

[74]  Roger A. Jones,et al.  Structural basis of RNA folding and recognition in an AMP–RNA aptamer complex , 1996, Nature.

[75]  Direct Correlation of Exchangeable and Nonexchangeable Protons on Purine Bases in 13C,15N-Labeled RNA Using a HCCNH-TOCSY Experiment , 1996 .

[76]  D. Bartel,et al.  Selective optimization of the Rev-binding element of HIV-1. , 1993, Nucleic acids research.

[77]  J. Williamson,et al.  Binding of an HIV Rev peptide to Rev responsive element RNA induces formation of purine-purine base pairs. , 1994, Biochemistry.

[78]  J. Szostak,et al.  In vitro selection of RNA molecules that bind specific ligands , 1990, Nature.

[79]  N. Seeman,et al.  Three-Dimensional Tertiary Structure of Yeast Phenylalanine Transfer RNA , 1974, Science.

[80]  D. Patel,et al.  Molecular recognition in the FMN-RNA aptamer complex. , 1996, Journal of molecular biology.

[81]  E Westhof,et al.  Structural Basis of Ligand Discrimination by Two Related RNA Aptamers Resolved by NMR Spectroscopy , 1996, Science.

[82]  Michael R. Green,et al.  Small molecules that selectively block RNA binding of HIV-1 rev protein inhibit rev function and viral production , 1993, Cell.

[83]  M Yarus,et al.  Three small ribooligonucleotides with specific arginine sites. , 1993, Biochemistry.

[84]  Michael Famulok,et al.  Molecular Recognition of Amino Acids by RNA-Aptamers: An L-Citrulline Binding RNA Motif and Its Evolution into an L-Arginine Binder , 1994 .

[85]  G. Rose,et al.  Helix stop signals in proteins and peptides: the capping box. , 1993, Biochemistry.

[86]  B Tidor,et al.  Arginine-mediated RNA recognition: the arginine fork , 1991, Science.

[87]  P. Sharp,et al.  Specific binding of a basic peptide from HIV‐1 Rev. , 1992, The EMBO journal.

[88]  A. Tulinsky,et al.  An ambiguous structure of a DNA 15-mer thrombin complex. , 1996, Acta crystallographica. Section D, Biological crystallography.

[89]  L. Gold,et al.  In vitro selection of RNA ligands to substance P. , 1995, Biochemistry.

[90]  Derek Hudson,et al.  RNA recognition by an isolated α helix , 1993, Cell.

[91]  A. Ellington,et al.  An RNA groove , 1996, Nature Structural Biology.

[92]  Yingfu Li,et al.  Recognition of anionic porphyrins by DNA aptamers. , 1996, Biochemistry.

[93]  J. Belasco,et al.  A Structural Model for the HIV-1 Rev–RRE Complex Deduced from Altered-Specificity Rev Variants Isolated by a Rapid Genetic Strategy , 1996, Cell.

[94]  Jon R. Lorsch,et al.  In vitro evolution of new ribozymes with polynucleotide kinase activity , 1994, Nature.

[95]  Michael R. Green,et al.  HIV-1 rev regulation involves recognition of non-Watson-Crick base pairs in viral RNA , 1991, Cell.