Coordinate Regulation of Salmonella Pathogenicity Island 1 (SPI1) and SPI4 in Salmonella enterica Serovar Typhimurium

ABSTRACT Salmonella enterica serovar Typhimurium harbors five pathogenicity islands (SPI) required for infection in vertebrate hosts. Although the role of SPI1 in promoting epithelial invasion and proinflammatory cell death has been amply documented, SPI4 has only more recently been implicated in Salmonella virulence. SPI4 is a 24-kb pathogenicity island containing six open reading frames, siiA to siiF. Secretion of the 595-kDa SiiE protein requires a type I secretory system encoded by siiC, siiD, and siiF. An operon polarity suppressor (ops) sequence within the 5′ untranslated region upstream of siiA is required for optimal SPI4 expression and predicted to bind the antiterminator RfaH. SiiE concentrations are decreased in a SPI1 mutant strain, suggesting that SPI1 and SPI4 may have common regulatory inputs. SPI1 gene expression is positively regulated by the transcriptional activators HilA, HilC, and HilD, encoded within SPI1, and negatively regulated by the regulators HilE and PhoP. Here, we show that mutations in hilA, hilC, or hilD similarly reduce expression of siiE, and mutations in hilE or phoP enhance siiE expression. Individual overexpression of HilA, HilC, or HilD in the absence of SPI1 cannot activate siiE expression, suggesting that these transcriptional regulators act in concert or in combination with additional SPI1-encoded regulatory loci to activate SPI4. HilA is no longer required for siiE expression in an hns mutant strain, suggesting that HilA promotes SPI4 expression by antagonizing the global transcriptional silencer H-NS. Coordinate regulation suggests that SPI1 and SPI4 play complementary roles in the interaction of S. enterica serovar Typhimurium with the host intestinal mucosa.

[1]  F. Fang,et al.  Co‐regulation of Salmonella enterica genes required for virulence and resistance to antimicrobial peptides by SlyA and PhoP/PhoQ , 2005, Molecular microbiology.

[2]  R. L. Lucas,et al.  Co‐ordinate regulation of Salmonella typhimurium invasion genes by environmental and regulatory factors is mediated by control of hilA expression , 1996, Molecular microbiology.

[3]  J. Slauch,et al.  Adaptation to the host environment: regulation of the SPI1 type III secretion system in Salmonella enterica serovar Typhimurium. , 2007, Current opinion in microbiology.

[4]  F. García-del Portillo Salmonella intracellular proliferation: where, when and how? , 2001, Microbes and infection.

[5]  B. Marshall,et al.  Identifying cloned Helicobacter pylori promoters by primer extension using a FAM-labelled primer and GeneScan analysis. , 2005, Journal of microbiological methods.

[6]  R. L. Lucas,et al.  Roles of hilC and hilD in Regulation of hilA Expression in Salmonella enterica Serovar Typhimurium , 2001, Journal of bacteriology.

[7]  Eduardo A. Groisman,et al.  The SPI-3 Pathogenicity Island ofSalmonella enterica , 1999, Journal of bacteriology.

[8]  S. Porwollik,et al.  Evolutionary genomics of Salmonella: Gene acquisitions revealed by microarray analysis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[9]  B. Ahmer,et al.  Pathways Leading from BarA/SirA to Motility andVirulence Gene Expression inSalmonella , 2003, Journal of bacteriology.

[10]  F. Ausubel,et al.  Caenorhabditis elegans-Based Screen Identifies Salmonella Virulence Factors Required for Conserved Host-Pathogen Interactions , 2004, Current Biology.

[11]  S. Miller,et al.  PhoP/PhoQ transcriptional repression of Salmonella typhimurium invasion genes: evidence for a role in protein secretion , 1995, Molecular microbiology.

[12]  H. Ochman,et al.  How Salmonella became a pathogen. , 1997, Trends in microbiology.

[13]  L. M. Schechter,et al.  AraC/XylS family members, HilC and HilD, directly bind and derepress the Salmonella typhimurium hilA promoter , 2001, Molecular microbiology.

[14]  R. Welch,et al.  RfaH enhances elongation of Escherichia coli hlyCABD mRNA , 1996, Journal of bacteriology.

[15]  J. Goldberg,et al.  Cable Pili and the 22-Kilodalton Adhesin Are Required for Burkholderia cenocepacia Binding to and Transmigration across the Squamous Epithelium , 2005, Infection and Immunity.

[16]  I. Maruyama,et al.  cRACE: a simple method for identification of the 5' end of mRNAs. , 1995, Nucleic acids research.

[17]  Catherine A. Lee,et al.  The HilA Box and Sequences outside It Determine the Magnitude of HilA-Dependent Activation of PprgHfrom Salmonella Pathogenicity Island 1 , 2001, Journal of bacteriology.

[18]  D. Belin,et al.  Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter , 1995, Journal of bacteriology.

[19]  J. Hinton,et al.  H-NS Mediates the Silencing of Laterally Acquired Genes in Bacteria , 2006, PLoS pathogens.

[20]  I. Roberts,et al.  Regulation of the Escherichia coli K5 capsule gene cluster by transcription antitermination , 1997, Molecular microbiology.

[21]  J. Galán,et al.  Salmonella interactions with host cells: type III secretion at work. , 2001, Annual review of cell and developmental biology.

[22]  L. M. Schechter,et al.  Two AraC/XylS family members can independently counteract the effect of repressing sequences upstream of the hilA promoter , 1999, Molecular microbiology.

[23]  R. Clayton,et al.  Identification of a vibrio cholerae RTX toxin gene cluster that is tightly linked to the cholera toxin prophage. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Yipeng Wang,et al.  Selective Silencing of Foreign DNA with Low GC Content by the H-NS Protein in Salmonella , 2006, Science.

[25]  B. Finlay,et al.  Salmonella interactions with host cells: in vitro to in vivo. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[26]  B. China,et al.  Secretion of virulence factors by Escherichia coli. , 1999, Veterinary research.

[27]  K. Marchal,et al.  Microarray Analysis and Motif Detection Reveal New Targets of the Salmonella enterica Serovar Typhimurium HilA Regulatory Protein, Including hilA Itself , 2005, Journal of bacteriology.

[28]  B. Jones,et al.  Identification and characterization of mutants with increased expression of hilA, the invasion gene transcriptional activator of Salmonella typhimurium. , 2000, FEMS immunology and medical microbiology.

[29]  S. J. Thurston,et al.  Identification and Sequence Analysis of a 27-Kilobase Chromosomal Fragment Containing a Salmonella Pathogenicity Island Located at 92 Minutes on the Chromosome Map of Salmonella enterica Serovar Typhimurium LT2 , 1998, Infection and Immunity.

[30]  F. Fang,et al.  Silencing of xenogeneic DNA by H-NS-facilitation of lateral gene transfer in bacteria by a defense system that recognizes foreign DNA. , 2007, Genes & development.

[31]  J. van Reeuwijk,et al.  Salmonella SirA is a global regulator of genes mediating enteropathogenesis , 1999, Molecular Microbiology.

[32]  K. Schuebel,et al.  S. typhimurium Encodes an Activator of Rho GTPases that Induces Membrane Ruffling and Nuclear Responses in Host Cells , 1998, Cell.

[33]  J. Slauch,et al.  HilD, HilC and RtsA constitute a feed forward loop that controls expression of the SPI1 type three secretion system regulator hilA in Salmonella enterica serovar Typhimurium , 2005, Molecular microbiology.

[34]  M. Pallen,et al.  Down-Regulation of Key Virulence Factors Makes the Salmonella enterica Serovar Typhimurium rfaH Mutant a Promising Live-Attenuated Vaccine Candidate , 2006, Infection and Immunity.

[35]  S. Miller,et al.  A PhoP-repressed gene promotes Salmonella typhimurium invasion of epithelial cells , 1993, Journal of bacteriology.

[36]  B. Jones,et al.  Non‐invasive Salmonella typhimurium mutants are avirulent because of an inability to enter and destroy M cells of ileal Peyer's patches , 1997, Molecular microbiology.

[37]  Kathleen Marchal,et al.  Delineation of the Salmonella enterica Serovar Typhimurium HilA Regulon through Genome-Wide Location and Transcript Analysis , 2007, Journal of bacteriology.

[38]  Catherine A. Lee,et al.  hilA is a novel ompR/toxR family member that activates the expression of Salmonella typhimurium invasion genes , 1995, Molecular microbiology.

[39]  B. Jones,et al.  Serovar Typhimurium Invasive Phenotype Salmonella Enterica Expression of the Transcription and Hila Regulates Hile Interacts with Hild and Negatively , 2002 .

[40]  C. Altier Genetic and environmental control of salmonella invasion. , 2005, Journal of microbiology.

[41]  V. L. Miller,et al.  H-NS Represses inv Transcription in Yersinia enterocolitica through Competition with RovA and Interaction with YmoA , 2006, Journal of bacteriology.

[42]  M. Hensel,et al.  Salmonella Pathogenicity Island 4-Mediated Adhesion Is Coregulated with Invasion Genes in Salmonella enterica , 2007, Infection and Immunity.

[43]  Jennifer A. Leeds,et al.  Enhancing transcription through the Escherichia coli hemolysin operon, hlyCABD: RfaH and upstream JUMPStart DNA sequences function together via a postinitiation mechanism , 1997, Journal of bacteriology.

[44]  J. Slauch,et al.  RtsA and RtsB Coordinately Regulate Expression of the Invasion and Flagellar Genes in Salmonella enterica Serovar Typhimurium , 2003, Journal of bacteriology.

[45]  U. Alon Network motifs: theory and experimental approaches , 2007, Nature Reviews Genetics.

[46]  A. Bäumler,et al.  Capsule-Mediated Immune Evasion: a New Hypothesis Explaining Aspects of Typhoid Fever Pathogenesis , 2006, Infection and Immunity.

[47]  K. Darwin,et al.  Molecular Basis of the Interaction ofSalmonella with the Intestinal Mucosa , 1999, Clinical Microbiology Reviews.

[48]  Ronald K. Taylor,et al.  Vibrio cholerae H-NS Silences Virulence Gene Expression at Multiple Steps in the ToxR Regulatory Cascade , 2000, Journal of bacteriology.

[49]  M. Stevens,et al.  SiiE Is Secreted by the Salmonella enterica Serovar Typhimurium Pathogenicity Island 4-Encoded Secretion System and Contributes to Intestinal Colonization in Cattle , 2007, Infection and Immunity.

[50]  B. Jones Salmonella invasion gene regulation: a story of environmental awareness. , 2005, Journal of microbiology.

[51]  J. Karlinsey,et al.  lambda-Red genetic engineering in Salmonella enterica serovar Typhimurium. , 2007, Methods in enzymology.

[52]  V. Miller,et al.  InvF Is Required for Expression of Genes Encoding Proteins Secreted by the SPI1 Type III Secretion Apparatus inSalmonella typhimurium , 1999, Journal of bacteriology.

[53]  K. Hughes,et al.  Genetic Transplantation: Salmonella enterica Serovar Typhimurium as a Host To Study Sigma Factor and Anti-Sigma Factor Interactions in GeneticallyIntractable Systems , 2006, Journal of bacteriology.

[54]  B. Wanner,et al.  One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[55]  L. Kenney,et al.  The response regulator SsrB activates expression of diverse Salmonella pathogenicity island 2 promoters and counters silencing by the nucleoid‐associated protein H‐NS , 2007, Molecular microbiology.

[56]  L. M. Schechter,et al.  AraC/XylS family members, HilD and HilC, directly activate virulence gene expression independently of HilA in Salmonella typhimurium , 2003, Molecular microbiology.

[57]  Martin G. Reese,et al.  Application of a Time-delay Neural Network to Promoter Annotation in the Drosophila Melanogaster Genome , 2001, Comput. Chem..

[58]  R. Wilson,et al.  Complete genome sequence of Salmonella enterica serovar Typhimurium LT2 , 2001, Nature.

[59]  R. Maurer,et al.  Characterization of two novel regulatory genes affecting Salmonella invasion gene expression , 2000, Molecular microbiology.

[60]  C. Dorman Probing bacterial nucleoid structure with optical tweezers. , 2007, BioEssays : news and reviews in molecular, cellular and developmental biology.

[61]  B. Jones,et al.  The fimYZ Genes Regulate Salmonella enterica Serovar Typhimurium Invasion in Addition to Type 1 Fimbrial Expression and Bacterial Motility , 2005, Infection and Immunity.

[62]  Samuel I. Miller,et al.  Transcriptional activation of Salmonella typhimurium invasion genes by a member of the phosphorylated response‐regulator superfamily , 1996, Molecular microbiology.

[63]  A. Bäumler,et al.  Salmonella enterica serotype Typhimurium MisL is an intestinal colonization factor that binds fibronectin , 2005, Molecular microbiology.

[64]  Seung Min Kim,et al.  Identification and characterization of the Vibrio vulnificus rtxA essential for cytotoxicity in vitro and virulence in mice. , 2007, Journal of microbiology.

[65]  M. Jones,et al.  Identification of a pathogenicity island required for Salmonella enteropathogenicity , 1998, Molecular microbiology.

[66]  S. Libby,et al.  The spv genes on the Salmonella dublin virulence plasmid are required for severe enteritis and systemic infection in the natural host , 1997, Infection and immunity.

[67]  Samuel I. Miller,et al.  A HilA-Independent Pathway to Salmonella typhimurium Invasion Gene Transcription , 1999, Journal of bacteriology.

[68]  M. Maguire,et al.  Magnesium and the Role of mgtC in Growth of Salmonella typhimurium , 1998, Infection and Immunity.

[69]  J. Galán,et al.  The Salmonella typhimurium invasion genes invF and invG encode homologues of the AraC and PulD family of proteins , 1994, Molecular microbiology.

[70]  B. Finlay,et al.  Salmonella pathogenicity islands: big virulence in small packages. , 2000, Microbes and infection.

[71]  H. Schmieger The fate of the bacterial chromosome in P22-infected cells of Salmonella typhimurium , 2004, Molecular and General Genetics MGG.

[72]  J. Mekalanos,et al.  In vivo covalent cross‐linking of cellular actin by the Vibrio cholerae RTX toxin , 2000, The EMBO journal.

[73]  B. Stecher,et al.  Salmonella Pathogenicity Island 4 encodes a giant non‐fimbrial adhesin and the cognate type 1 secretion system , 2007, Cellular microbiology.

[74]  E. Boyd,et al.  Salmonella reference collection B (SARB): strains of 37 serovars of subspecies I. , 1993, Journal of general microbiology.

[75]  R. Landick,et al.  The Transcriptional Regulator RfaH Stimulates RNA Chain Synthesis after Recruitment to Elongation Complexes by the Exposed Nontemplate DNA Strand , 2002, Cell.

[76]  V. DiRita,et al.  Regulation of gene expression in Vibrio cholerae by ToxT involves both antirepression and RNA polymerase stimulation , 2002, Molecular microbiology.

[77]  Mark P Stevens,et al.  Identification of host‐specific colonization factors of Salmonella enterica serovar Typhimurium , 2004, Molecular microbiology.

[78]  W. Hardt,et al.  Characterization of SprA, an AraC‐like transcriptional regulator encoded within the Salmonella typhimurium pathogenicity island 1 , 1999, Molecular microbiology.

[79]  M. J. Bailey,et al.  RfaH and the ops element, components of a novel system controlling bacterial transcription elongation , 1997, Molecular microbiology.

[80]  B. Finlay,et al.  Salmonella effectors within a single pathogenicity island are differentially expressed and translocated by separate type III secretion systems , 2002, Molecular microbiology.

[81]  Kim Rutherford,et al.  Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18 , 2001, Nature.

[82]  H. Danbara,et al.  Association of a Regulatory Gene, slyA with a Mouse Virulence of Salmonella Serovar Choleraesuis , 2002, Microbiology and immunology.

[83]  T. Ficht,et al.  Contribution of Salmonella typhimuriumVirulence Factors to Diarrheal Disease in Calves , 1999, Infection and Immunity.

[84]  J. Karlinsey,et al.  λ‐Red Genetic Engineering in Salmonella enterica serovar Typhimurium , 2007 .

[85]  G. Garrity,et al.  Nomenclature and taxonomy of the genus Salmonella. , 2005, International journal of systematic and evolutionary microbiology.

[86]  G. Nagy,et al.  Contribution of SPI-4 genes to the virulence of Salmonella enterica. , 2007, FEMS microbiology letters.

[87]  J. Fierer,et al.  Characterization of the spv Locus in Salmonella enterica Serovar Arizona , 2002, Infection and Immunity.

[88]  R. Kadner,et al.  DNA-Binding Activities of the HilC and HilD Virulence Regulatory Proteins of Salmonella enterica Serovar Typhimurium , 2002, Journal of bacteriology.

[89]  A. Bäumler The record of horizontal gene transfer in Salmonella. , 1997, Trends in microbiology.

[90]  R. Welch,et al.  RTX toxin structure and function: a story of numerous anomalies and few analogies in toxin biology. , 2001, Current topics in microbiology and immunology.

[91]  C. Haidaris,et al.  Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. , 1986, Proceedings of the National Academy of Sciences of the United States of America.