Integral equations via saddle point problems for time-harmonic Maxwell's equations

We propose a new system of integral equations for the exterior time harmonic Maxwell's equation. This system is derived first from elementary manipulations of classical equations then by the minimization of a quadratic functional associated to incoming and outgoing electromagnetic waves. We analyze the inf-sup condition and various penalized problems related to this system. Then we prove that an iterative algorithm for the solution of the system of integral equations is convergent. Other numerical issues are also discussed.

[1]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[2]  Jiming Song,et al.  Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects , 1997 .

[3]  Integral Equations VIA Saddle Point Problem for 2D Electromagnetic Problems , 2000 .

[4]  Michael A. Epton,et al.  Multipole Translation Theory for the Three-Dimensional Laplace and Helmholtz Equations , 1995, SIAM J. Sci. Comput..

[5]  P. M. van den Berg,et al.  Iterative Methods for Solving Integral Equations , 1991, Progress In Electromagnetics Research.

[6]  B. Després Fonctionnelle quadratique et équations intégrales pour les équations de Maxwell harmoniques en domaine extérieur , 1996 .

[7]  Patrick Joly,et al.  Domain Decomposition Method for Harmonic Wave Propagation : A General Presentation , 2000 .

[8]  R. Dautray,et al.  Analyse mathématique et calcul numérique pour les sciences et les techniques , 1984 .

[9]  Eric Darve,et al.  The Fast Multipole Method , 2000 .

[10]  Philip Hartman,et al.  On solutions of the Helmholtz equation in exterior domains , 1961 .

[11]  R. Kleinman,et al.  Mathematical foundations for error estimation in numerical solutions of integral equations in electromagnetics , 1997 .

[12]  Jianxin Zhou,et al.  Boundary element methods , 1992, Computational mathematics and applications.

[13]  J. Craggs Applied Mathematical Sciences , 1973 .

[14]  B. Després,et al.  A Domain Decomposition Method for the Solution of Large Electromagnetic Scattering Problems , 1999 .

[15]  P. Lascaux,et al.  Analyse numérique matricielle appliquée a l'art de l'ingénieur , 1987 .

[16]  Xavier Antoine,et al.  Bayliss-Turkel-like radiation conditions on surfaces of arbitrary shape , 1999 .

[17]  Bruno Stupfel,et al.  A hybrid finite element and integral equation domain decomposition method for the solution of the 3-D scattering problem , 2001 .

[18]  T. Senior Approximate boundary conditions , 1981 .

[19]  B. Després,et al.  Fonctionnelle quadratique et équations intégrales pour les problèmes d'onde harmonique en domaine extérieur , 1997 .

[20]  M. D. Pocock,et al.  The complex bi-conjugate gradient solver applied to large electromagnetic scattering problems, computational costs, and cost scalings , 1997 .

[21]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.