Inexact Newton Methods with Restricted Additive Schwarz Based Nonlinear Elimination for Problems with High Local Nonlinearity
暂无分享,去创建一个
[1] Homer F. Walker,et al. Choosing the Forcing Terms in an Inexact Newton Method , 1996, SIAM J. Sci. Comput..
[2] Felix Kwok. Is Additive Schwarz with Harmonic Extension Just Lions’ Method in Disguise? , 2011 .
[3] Paul J. Lanzkron,et al. An Analysis of Approximate Nonlinear Elimination , 1996, SIAM J. Sci. Comput..
[4] William Gropp,et al. Parallel Newton-Krylov-Schwarz Algorithms for the Transonic Full Potential Equation , 1996, SIAM J. Sci. Comput..
[5] W. Hackbusch,et al. On the nonlinear domain decomposition method , 1997 .
[6] C. Hirsch,et al. Numerical Computation of Internal and External Flows. By C. HIRSCH. Wiley. Vol. 1, Fundamentals of Numerical Discretization. 1988. 515 pp. £60. Vol. 2, Computational Methods for Inviscid and Viscous Flows. 1990, 691 pp. £65. , 1991, Journal of Fluid Mechanics.
[7] Xiao-Chuan Cai,et al. A class of parallel two-level nonlinear Schwarz preconditioned inexact Newton algorithms ☆ , 2007 .
[8] Barry F. Smith,et al. Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .
[9] C. Kelley. Iterative Methods for Linear and Nonlinear Equations , 1987 .
[10] Xiao-Chuan Cai,et al. Domain Decomposition Methods for Monotone Nonlinear Elliptic Problems , 1994 .
[11] Yousef Saad,et al. Hybrid Krylov Methods for Nonlinear Systems of Equations , 1990, SIAM J. Sci. Comput..
[12] Peter A. Forsyth,et al. Robust linear and nonlinear strategies for solution of the transonic Euler equations , 1995 .
[13] David E. Keyes,et al. Multi-domain multi-model formulation for compressible flows - Conservative interface coupling and parallel implicit solvers for 3D unstructured meshes , 1999 .
[14] Xiao-Chuan Cai,et al. TWO-LEVEL NONLINEAR ELIMINATION BASED PRECONDITIONERS FOR INEXACT NEWTON METHODS WITH APPLICATION IN SHOCKED DUCT FLOW CALCULATION , 2010 .
[15] Michael B. Bieterman,et al. GLOBAL CONVERGENCE OF INEXACT NEWTON METHODS FOR TRANSONIC FLOW , 1990 .
[16] C. Kelley,et al. Convergence Analysis of Pseudo-Transient Continuation , 1998 .
[17] Homer F. Walker,et al. NITSOL: A Newton Iterative Solver for Nonlinear Systems , 1998, SIAM J. Sci. Comput..
[18] Xiao-Chuan Cai,et al. A Restricted Additive Schwarz Preconditioner for General Sparse Linear Systems , 1999, SIAM J. Sci. Comput..
[19] R. Dembo,et al. INEXACT NEWTON METHODS , 1982 .
[20] Xiao-Chuan Cai,et al. A parallel nonlinear additive Schwarz preconditioned inexact Newton algorithm for incompressible Navier-Stokes equations , 2005 .
[21] William Gropp,et al. Globalized Newton-Krylov-Schwarz Algorithms and Software for Parallel Implicit CFD , 2000, Int. J. High Perform. Comput. Appl..
[22] T. Chan,et al. Nonlinearly Preconditioned Krylov Subspace Methods for Discrete Newton Algorithms , 1984 .
[23] David E. Keyes,et al. Nonlinearly Preconditioned Inexact Newton Algorithms , 2002, SIAM J. Sci. Comput..
[24] Yousef Saad,et al. Convergence Theory of Nonlinear Newton-Krylov Algorithms , 1994, SIAM J. Optim..
[25] David E. Keyes,et al. A Nonlinear Additive Schwarz Preconditioned Inexact Newton Method for Shocked Duct Flow , 2000 .
[26] M. Gander,et al. Why Restricted Additive Schwarz Converges Faster than Additive Schwarz , 2003 .
[27] Homer F. Walker,et al. Globally Convergent Inexact Newton Methods , 1994, SIAM J. Optim..