Dietary sterol availability modulates heat tolerance of Daphnia

[1]  Erik Sperfeld,et al.  Food quality mediates responses of Daphnia magna life history traits and heat tolerance to elevated temperature , 2022, Freshwater Biology.

[2]  C. Nietch,et al.  Increasingly severe cyanobacterial blooms and deep water hypoxia coincide with warming water temperatures in reservoirs , 2021, Global change biology.

[3]  J. Overgaard,et al.  A unifying model to estimate thermal tolerance limits in ectotherms across static, dynamic and fluctuating exposures to thermal stress , 2021, Scientific Reports.

[4]  A. Bec,et al.  Quantifying the energetic cost of food quality constraints on resting metabolism to integrate nutritional and metabolic ecology. , 2021, Ecology letters.

[5]  Mauro Santos,et al.  Predicting temperature mortality and selection in natural Drosophila populations , 2020, Science.

[6]  S. Einum,et al.  Acclimation capacity and rate change through life in the zooplankton Daphnia , 2020, Proceedings of the Royal Society B.

[7]  Apostolos-Manuel Koussoroplis,et al.  U-shaped response Unifies views on temperature dependency of stoichiometric requirements. , 2020, Ecology letters.

[8]  S. Einum,et al.  The old and the large may suffer disproportionately during episodes of high temperature: evidence from a keystone zooplankton species , 2020, Conservation physiology.

[9]  J. Stillman Heat Waves, the New Normal: Summertime Temperature Extremes Will Impact Animals, Ecosystems, and Human Communities. , 2019, Physiology.

[10]  S. Einum,et al.  Automated measurement of upper thermal limits in small aquatic animals , 2018, Journal of Experimental Biology.

[11]  M. O’Connor,et al.  Prior heat accumulation reduces survival during subsequent experimental heat waves , 2018 .

[12]  K. Sand‐Jensen,et al.  Extreme diel dissolved oxygen and carbon cycles in shallow vegetated lakes , 2017, Proceedings of the Royal Society B: Biological Sciences.

[13]  P. Merkel,et al.  Sterols of freshwater microalgae : potential implications for zooplankton nutrition , 2016 .

[14]  David P. Hamilton,et al.  Diel Surface Temperature Range Scales with Lake Size , 2016, PloS one.

[15]  A. Wacker,et al.  Covariance modulates the effect of joint temperature and food variance on ectotherm life-history traits. , 2016, Ecology letters.

[16]  J. Stillman,et al.  Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming , 2015, Proceedings of the Royal Society B: Biological Sciences.

[17]  Robert K. Colwell,et al.  Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation , 2014, Proceedings of the National Academy of Sciences.

[18]  L. Yampolsky,et al.  Adaptive phenotypic plasticity and local adaptation for temperature tolerance in freshwater zooplankton , 2014, Proceedings of the Royal Society B: Biological Sciences.

[19]  Christopher B. Field,et al.  Changes in Ecologically Critical Terrestrial Climate Conditions , 2013, Science.

[20]  M. Lürling,et al.  Comparison of cyanobacterial and green algal growth rates at different temperatures , 2013 .

[21]  A. Wacker,et al.  Biochemical nutrient requirements of the rotifer Brachionus calyciflorus: co‐limitation by sterols and amino acids , 2012 .

[22]  David P. Hamilton,et al.  Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. , 2012, Water research.

[23]  A. Wacker,et al.  Dietary lipid quality affects temperature-mediated reaction norms of a freshwater key herbivore , 2012, Oecologia.

[24]  A. Wacker,et al.  Temperature affects the limitation of Daphnia magna by eicosapentaenoic acid, and the fatty acid composition of body tissue and eggs , 2012 .

[25]  R. Grosberg,et al.  Limited potential for adaptation to climate change in a broadly distributed marine crustacean , 2012, Proceedings of the Royal Society B: Biological Sciences.

[26]  V. Lushchak Environmentally induced oxidative stress in aquatic animals. , 2011, Aquatic toxicology.

[27]  J. Buchner,et al.  The heat shock response: life on the verge of death. , 2010, Molecular cell.

[28]  A. Wacker,et al.  Effects of temperature and dietary sterol availability on growth and cholesterol allocation of the aquatic keystone species Daphnia , 2009, Journal of Experimental Biology.

[29]  E. Crockett,et al.  Habitat temperature is an important determinant of cholesterol contents in copepods , 2009, Journal of Experimental Biology.

[30]  D. Martin‐Creuzburg,et al.  Absence of sterols constrains carbon transfer between cyanobacteria and a freshwater herbivore (Daphnia galeata) , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[31]  Øyvind Langsrud,et al.  ANOVA for unbalanced data: Use Type II instead of Type III sums of squares , 2003, Stat. Comput..

[32]  G. Meehl,et al.  Climate extremes: observations, modeling, and impacts. , 2000, Science.

[33]  E. Crockett Cholesterol Function in Plasma Membranes from Ectotherms: Membrane-Specific Roles in Adaptation to Temperature' , 1998 .

[34]  D. Rice,et al.  Effects of cholesterol on sodium-potassium ATPase ATP hydrolyzing activity in bovine kidney , 1988 .

[35]  M. Bloom,et al.  The evolution of membranes , 1988 .

[36]  W. Lampert,et al.  Multiple aspects of food limitation in zooplankton communities: the Daphnia - Eudiaptomus example , 1985 .

[37]  M. Sinensky Homeoviscous adaptation--a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[38]  R. Ostwald,et al.  Erythrocyte membranes--effect of increased cholesterol content on permeability. , 1971, Biochimica et biophysica acta.

[39]  Z. Horváth,et al.  Vertical distribution of zooplankton in a shallow peatland pond: the limiting role of dissolved oxygen , 2013 .

[40]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[41]  J. Hazel Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation? , 1995, Annual review of physiology.