A derivative-free implementation of the extended Kalman filter

A nonlinear estimation paradigm is developed to estimate the mean and covariance of a time-evolving state distribution. The approach represents uncertainty by an ensemble set of state vectors rather than by the traditional mean and covariance measures, avoiding the need for the calculation of matrix partial derivatives (Jacobian matrices). The paradigm is shown to be equivalent to the extended Kalman filter in a limiting case. Implementation of the new filtering approach is illustrated with a simple example and a step-by-step description. The paradigm is not significantly more computationally intensive than traditional filters and proves ideal for the rapid implementation of complex nonlinear system and observation models.

[1]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[2]  Keiken Ninomiya,et al.  Optical guidance for autonomous landing of spacecraft , 1999 .

[3]  Hugh F. Durrant-Whyte,et al.  A new method for the nonlinear transformation of means and covariances in filters and estimators , 2000, IEEE Trans. Autom. Control..

[4]  Eam Khwang Teoh,et al.  Multi-sensor fusion for steerable four-wheeled industrial vehicles , 1999 .

[5]  Arnold W. Heemink,et al.  Wave data assimilation with the Kalman filter , 1999 .

[6]  Mark L. Psiaki,et al.  Ground tests of magnetometer-based autonomous navigation (MAGNAV) for low-earth-orbiting spacecraft , 1991 .

[7]  H.F. Durrant-Whyte,et al.  A new approach for filtering nonlinear systems , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[8]  G. Dévai,et al.  Modelling zooplankton population dynamics with the extended Kalman filtering technique , 1998 .

[9]  S. Synnott,et al.  Voyager orbit determination at Jupiter , 1983 .

[10]  G. Evensen Using the Extended Kalman Filter with a Multilayer Quasi-Geostrophic Ocean Model , 1992 .

[11]  James R. Drummond,et al.  Scanning the Earth's limb from a high-altitude balloon: The development and flight of a new balloon-based pointing system , 2002 .

[12]  Hermann Speckmann,et al.  A high-performance control system for spreading liquid manure☆ , 2001 .

[13]  J. Uhlmann,et al.  Implicit Jacobian for linearised state estimation in nonlinear systems , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[14]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[15]  Thomas M. Hattox,et al.  GPS roadside integrated precision positioning system , 2000, IEEE 2000. Position Location and Navigation Symposium (Cat. No.00CH37062).

[16]  F Rocadenbosch,et al.  Adaptive filter solution for processing lidar returns: optical parameter estimation. , 1998, Applied optics.

[17]  G. J. Castro,et al.  An effective camera calibration method , 1998, AMC'98 - Coimbra. 1998 5th International Workshop on Advanced Motion Control. Proceedings (Cat. No.98TH8354).

[18]  Hermann Speckmann,et al.  A high performance control system for spreading of liquid manure , 1999 .

[19]  Naouel Daouas,et al.  Version étendue du filtre de Kalman discret appliquée à un problème inverse de conduction de chaleur non linéaire , 2000 .

[20]  Michael J. Grimble,et al.  Dynamic ship positioning using a self-tuning Kalman filter , 1983 .

[21]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[22]  E. J. Lefferts,et al.  Kalman Filtering for Spacecraft Attitude Estimation , 1982 .

[23]  Lindsay Kleeman,et al.  Ultrasonic classification and location of 3D room features using maximum likelihood estimation - Part I , 1997, Robotica.

[24]  Carl Chiarella,et al.  Interest rate futures: estimation of volatility parameters in an arbitrage-free framework , 1995, IEEE/IAFE 1996 Conference on Computational Intelligence for Financial Engineering (CIFEr).

[25]  Edward Boje,et al.  Application of the extended Kalman filter to a lysine hydrochlorination process , 2000 .

[26]  Asgeir J. Sørensen,et al.  Identification of Dynamically Positioned Ships , 1995 .

[27]  Mario Innocenti,et al.  Experimental application of extended Kalman filtering for sensor validation , 2001, IEEE Trans. Control. Syst. Technol..

[28]  A. Wu SBIRS high payload LOS attitude determination and calibration , 1998, 1998 IEEE Aerospace Conference Proceedings (Cat. No.98TH8339).

[29]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[30]  Bernt Nilsson,et al.  Control of flexible mobile manipulators: positioning and vibration reduction using an eye-in-hand range camera , 1998 .

[31]  M. Ghil,et al.  Data assimilation in meteorology and oceanography , 1991 .

[32]  J. Tylee,et al.  On-line failure detection in nuclear power plant instrumentation , 1983 .

[33]  M. N. Karim,et al.  A STUDY ON REAL-TIME OPTIMIZATION OF A FEDBATCH RECOMBINANT ESCHERICHIA COLI FERMENTATION , 1993 .

[34]  Léon Personnaz,et al.  A recursive algorithm based on the extended Kalman filter for the training of feedforward neural models , 1998, Neurocomputing.

[35]  Y. Bar-Shalom Tracking and data association , 1988 .

[36]  Laura R. Ray,et al.  Nonlinear Tire Force Estimation and Road Friction Identification: Simulation and Experiments, , 1997, Autom..

[37]  Hugh F. Durrant-Whyte,et al.  Mobile robot localization by tracking geometric beacons , 1991, IEEE Trans. Robotics Autom..

[38]  T. Crowley,et al.  On-line monitoring and control of a batch polymerization reactor , 1996 .

[39]  Robert H. Bishop,et al.  Adaptive Nonlinear Attitude Control and Momentum Management of Spacecraft , 1997 .

[40]  J. K. Al-Tayie,et al.  Estimation of speed, stator temperature and rotor temperature in cage induction motor drive using the extended Kalman filter algorithm , 1997 .

[41]  Angelo Alessandri,et al.  Fault detection of actuator faults in unmanned underwater vehicles , 1999 .

[42]  Tor Steinar Schei,et al.  A finite-difference method for linearization in nonlinear estimation algorithms , 1997, Autom..

[43]  T. Schei A finite-difference method for linearization in nonlinear estimation algorithms , 1998 .

[44]  D. Staelin,et al.  An Extended Kalman-Bucy Filter for Atmospheric Temperature Profile Retrieval with a Passive Microwave Sounder , 1978 .

[45]  Girijesh Prasad,et al.  Plant-wide predictive control for a thermal power plant based on a physical plant model , 2000 .

[46]  G. Bruzzone,et al.  Active sonar-based bottom-following for unmanned underwater vehicles , 1999 .

[47]  B. K. Walker,et al.  FDI by extended Kalman filter parameter estimation for an industrial actuator benchmark , 1994 .

[48]  Niels Kjølstad Poulsen,et al.  New developments in state estimation for nonlinear systems , 2000, Autom..

[49]  Peter C. Doerschuk,et al.  Statistical AM-FM models, extended Kalman filter demodulation, Cramer-Rao bounds, and speech analysis , 2000, IEEE Trans. Signal Process..

[50]  Maurizio Spirito,et al.  Further results on GSM mobile station location , 1999 .

[51]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .