Adaptive approximate Bayesian computation

Sequential techniques can enhance the efficiency of the approximate Bayesian computation algorithm, as in Sisson et al.'s (2007) partial rejection control version. While this method is based upon the theoretical works of Del Moral et al. (2006), the application to approximate Bayesian computation results in a bias in the approximation to the posterior. An alternative version based on genuine importance sampling arguments bypasses this difficulty, in connection with the population Monte Carlo method of Cappe et al. (2004), and it includes an automatic scaling of the forward kernel. When applied to a population genetics example, it compares favourably with two other versions of the approximate algorithm. Copyright 2009, Oxford University Press.

[1]  Jean-Marie Cornuet,et al.  Inferring population history with DIY ABC: a user-friendly approach to approximate Bayesian computation , 2008, Bioinform..

[2]  Jean-Michel Marin,et al.  Adaptive importance sampling in general mixture classes , 2007, Stat. Comput..

[3]  R. Douc,et al.  Convergence of Adaptive Sampling Schemes , 2007, 0708.0711.

[4]  S. Coles,et al.  Inference for Stereological Extremes , 2007 .

[5]  Mark M. Tanaka,et al.  Sequential Monte Carlo without likelihoods , 2007, Proceedings of the National Academy of Sciences.

[6]  Jean-Michel Marin,et al.  Convergence of Adaptive Sampling Schemes , 2004 .

[7]  J. Marin,et al.  Population Monte Carlo , 2004 .

[8]  Paul Marjoram,et al.  Markov chain Monte Carlo without likelihoods , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[9]  P. Moral,et al.  Sequential Monte Carlo samplers , 2002, cond-mat/0212648.

[10]  D. Balding,et al.  Approximate Bayesian computation in population genetics. , 2002, Genetics.

[11]  Tim Hesterberg,et al.  Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.

[12]  M. Feldman,et al.  Population growth of human Y chromosomes: a study of Y chromosome microsatellites. , 1999, Molecular biology and evolution.

[13]  Sumit Roy,et al.  Adaptive Importance Sampling , 1993, IEEE J. Sel. Areas Commun..

[14]  C. Cornell,et al.  Adaptive Importance Sampling , 1990 .

[15]  ANTHONY WREN,et al.  Population Growth , 1972, Nature.