Direct UV-writing of waveguides

The research presented in this Ph.D. thesis is concerned about fabrication of waveguide structures in photosensitized germanosilica thin films by exposure to Ultra-violet (UV) radiation. Using a high pressure loading system and a waveguide fabrication setup, planar waveguiding structures with an UV induced refractive index change of more than 10−2 have been obtained. New insight, with respect to understanding the UV induced index change obtained by direct UV writing, has been provided, through experiments conducted with such high-pressure loaded germanosilica samples. This include measurements of the UV induced refractive index change, and spectroscopic measurements of the defect distribution, for various fabrication parameters. A method to measure the concentration of molecular hydrogen in thin film planar waveguide samples is established, and validated for hydrogen loading at up to 12 mole%. The solubility of molecular hydrogen is hereby found not to depend on the loading pressure. Modelling the diffusivity of molecular hydrogen in such samples shows the expected diffusion behavior only when loading at a pressure below 200 bar. The work has mainly been carried out at the COM Center, Technical University of Denmark, under supervision of Mikael Svalgaard and Martin Kristensen. The work related to luminescence spectroscopy have mainly been carried out at Université de Paris-Sud XI (France) under supervision of Professor B. Poumellec. Resume Denne Ph.D. these omhandler fabrikation af bølgeleder strukturer ved en teknik kendt som Direkte UV-skrivning, hvorved en fotofølsom tyndfilm best̊aende af germanium doteret silica belyses med en fokuseret ultraviolet (UV) laser str̊ale. Herved kan man inducere en lokal forøgelse af brydnings indekset og s̊aledes forme bølgeledere ved at translatere filmen under UV str̊alen. For at opn̊a rimelige bølgeleder egenskaber kræves en relativ stor ændring i brydnings indekset, hvilket kun har vist sig muligt for det anvendte tyndfilms materiale hvis det indeholder en mængde molekylær brint. Den inducerede brydnings ændring har s̊aledes vist sig at være stærkt afhængig af brintkoncentrationen under UV belysningen, hvorfor denne sammenhæng har været et gennemg̊aende tema i afhandlingen. Rent praktisk er der blevet installeret højtryksudstyr p̊a COM centret som muliggør indiffusion af molekylær brint i silica tyndfilms materialer, i koncentrationer p̊a helt op til 20 mol%. Herved har det været muligt at fremstille bølgeledere med en UV induceret brydnings indeks ændring p̊a over 2 × 10−2. Der har dog ogs̊a vist sig en del nye problemer iform af en s̊akaldt ”tærskel effekt”, en ikke monoton sammenhæng mellem indeks ændring og brint koncentration, komponent asymmetri og en forøget uddiffusion ved høje koncentrationer. Mange af disse fænomener er forsøgt belyst i denne these gennem beskrivelser af observationer, eksperimenter og tilhørende m̊aleresultater. Acknowledgements First I would like to thank my supervisors Mikael Svalgaard and Martin Kristensen for being very helpful and inspiring during my study. I also wish to thank Bertrand Poumellec and the people working at Laboratoire Physico-Chimie de L’etat Solide, Université de Paris-Sud XI, for the great help during my work in Paris. I have also had a large benefit from working together with Anders Harpøth, Tue Rosbirk, Michael Galili and Marc Andersen in the UV-lab. I owe thanks to Christian Rosberg, Rasmus Kjær, Mikkel Strange, Clement Lessel and Thomas Nielsen, who has helped me with several smaller projects related to my thesis. The people at NKT integration and Koheras also deserves a big thank for supplying us with samples, equipment and for helping in other practical aspects. I wish to thank the people in the ILC group: Karin Andersen, Peter Carøe, Karsten Rotwitt, Haiyan Ou, Søren Agger, Jørn Hedegaard, Hugh Philipp and Morten Dyndgaard. Other people that have been of great help are: Jesper B. Jensen, Carl-Johann Marckmann, Henrik Rokkjær, HansJürgen Deyerl, Jacob Fage, Rune Shim. Frank Persson and Jan Mortensen from the workshop at EMI should also have credit for their support with fabricating small parts for the different setups. I wish to thank the following people from MIC: Jörg Hübner, Winnie Svendsen, Rasmus Sandberg, Christian Mikkelsen and Ole Hansen. Finally my wife Louise (and the little guy she is carrying) deserves thanks for the waiting during the long nights of conducting experiments and thesis writing.

[1]  A. Boukenter,et al.  Temperature, H2 loading and ultra violet irradiation effects in germanosilicate optical fibers: laser spectroscopy measurements , 2001 .

[2]  J. E. Shelby,et al.  Molecular diffusion and solubility of hydrogen isotopes in vitreous silica , 1977 .

[3]  Mikael Svalgaard,et al.  Directly UV written silica-on-silicon planar waveguides with low insertion loss , 1998 .

[4]  Victor Mizrahi,et al.  Mechanisms of enhanced UV photosensitivity via hydrogen loading in germanosilicate glasses , 1993 .

[5]  Ian Bennion,et al.  Effects of thermal annealing on Bragg fibre gratings in boron/germania co-doped fibre , 1998 .

[6]  B. Poumellec,et al.  Comparison of UV optical absorption and UV excited luminescence behaviours in Ge doped silica under H2 loading or CW UV laser irradiation , 2003 .

[7]  M J Yuen,et al.  Ultraviolet absorption studies of germanium silicate glasses. , 1982, Applied optics.

[8]  C. Hartwig Erratum: Raman scattering from hydrogen and deuterium dissolved in silica as a function of pressure , 1976 .

[9]  J. Bokor,et al.  Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask , 1993 .

[10]  Jacques Albert,et al.  Effective index drift from molecular hydrogen diffusion in hydrogen-loaded optical fibres and its effect on Bragg grating fabrication , 1994 .

[11]  E. C. Lightowlers,et al.  Hydrogen solubility in silicon and hydrogen defects present after quenching , 1993 .

[12]  Paul J. Lemaire,et al.  Reliability of optical fibers exposed to hydrogen: prediction of long-term loss increases , 1991 .

[13]  J. Shackelford Gas solubility in glasses – principles and structural implications , 1999 .

[14]  K. Awazu,et al.  Simultaneous generation of optical absorption bands at 5.14 and 0.452 eV in 9 SiO2 :GeO2 glasses heated under an H2 atmosphere , 1990 .

[15]  J. F. Brennan,et al.  The behavior of silica optical fibers exposed to very high-pressure hydrogen environments , 1999, OFC/IOOC . Technical Digest. Optical Fiber Communication Conference, 1999, and the International Conference on Integrated Optics and Optical Fiber Communication.

[16]  Pieter L. Swart,et al.  Study of hydrogen diffusion in boron/germanium codoped optical fiber , 2002 .

[17]  J. Stone,et al.  Interactions of hydrogen and deuterium with silica optical fibers: A review , 1987 .

[18]  A R Chraplyvy,et al.  Gas-in-glass-a new Raman-gain medium: molecular hydrogen in solid-silica optical fibers. , 1982, Optics letters.

[19]  I. Riant,et al.  Demonstration of two distributions of defect centers in hydrogen-loaded high germanium content fibers , 1997, Proceedings of Optical Fiber Communication Conference (.

[20]  S. Elliott,et al.  The Physics and Chemistry of Solids , 1956, Nature.

[21]  M. Fokine,et al.  Large increase in photosensitivity through massive hydroxyl formation. , 2000, Optics letters.

[22]  A. S. Grove Physics and Technology of Semiconductor Devices , 1967 .

[23]  Don Monroe,et al.  DECAY OF ULTRAVIOLET-INDUCED FIBER BRAGG GRATINGS , 1994 .

[24]  Colombo,et al.  Hydrogen diffusion in silicon from tight-binding molecular dynamics. , 1994, Physical review letters.

[25]  A. Marshall,et al.  Hydrogen and deuterium gas-in-glass effects in single-mode optical fibres , 1985 .

[26]  Michael May,et al.  Photosensitivity and UV-induced optical loss of silica optical fibers exposed to very high pressure hydrogen environments , 1999, Optics East.

[27]  K. Chang,et al.  Pressure-induced birefringence in a coated highly birefringent optical fiber , 1990 .

[28]  J. Nishii,et al.  Photochemical process of divalent germanium responsible for photorefractive index change in GeO2-SiO2 glasses. , 2003, Optics express.

[29]  F. Leonberger,et al.  Integrated optics , 1986, IEEE Journal of Quantum Electronics.

[30]  Nabil M. Lawandy,et al.  Dynamics of the formation of Bragg gratings in germanosilicate optical fibers , 1990 .

[31]  R. C. Frank,et al.  Diffusion of Hydrogen and Deuterium in Fused Quartz , 1962 .

[32]  P. Lemaire,et al.  High pressure H/sub 2/ loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO/sub 2/ doped optical fibres , 1993 .

[33]  Bertrand Poumellec,et al.  Densification involved in the UV-based photosensitivity of silica glasses and optical fibers , 1997 .

[34]  Richard M. Fulrath,et al.  Solubility of Gases in Glass. II. He, Ne, and H2 in Fused Silica , 1972 .

[35]  A. R. Chraplyvy,et al.  Overtone absorption and Raman spectra of H2 and D2 in silica optical fibers , 1984, AT&T Bell Laboratories Technical Journal.