Mutations which decouple the proton pump of the cytochrome c oxidase from Rhodobacter sphaeroides perturb the environment of glutamate 286

[1]  M. Wikström,et al.  Towards the mechanism of proton pumping by the haem-copper oxidases. , 2006, Biochimica et biophysica acta.

[2]  G. Voth,et al.  Free energy profiles for H+ conduction in the D-pathway of Cytochrome c Oxidase: a study of the wild type and N98D mutant enzymes. , 2006, Biochimica et biophysica acta.

[3]  K. Vuorilehto,et al.  Redox titration of all electron carriers of cytochrome c oxidase by Fourier transform infrared spectroscopy. , 2006, Biochemistry.

[4]  R. Gennis,et al.  Controlled uncoupling and recoupling of proton pumping in cytochrome c oxidase. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[5]  H. Michel,et al.  Titration behavior of residues at the entrance of the D-pathway of cytochrome c oxidase from paracoccus denitrificans investigated by continuum electrostatic calculations. , 2005, Biophysical journal.

[6]  A. Puustinen,et al.  Gating of proton and water transfer in the respiratory enzyme cytochrome c oxidase. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Arieh Warshel,et al.  Simulating redox coupled proton transfer in cytochrome c oxidase: Looking for the proton bottleneck , 2005, FEBS letters.

[8]  A. Puustinen,et al.  ATR-FTIR spectroscopy and isotope labeling of the PM intermediate of Paracoccus denitrificans cytochrome c oxidase. , 2004, Biochemistry.

[9]  R. Gennis,et al.  Transmembrane Charge Separation during the Ferryl-oxo → Oxidized Transition in a Nonpumping Mutant of Cytochrome c Oxidase* , 2004, Journal of Biological Chemistry.

[10]  P. Brzezinski,et al.  Redox-driven membrane-bound proton pumps. , 2004, Trends in biochemical sciences.

[11]  M. Wikström Cytochrome c oxidase: 25 years of the elusive proton pump. , 2004, Biochimica et biophysica acta.

[12]  R. Gennis,et al.  FTIR studies of internal proton transfer reactions linked to inter-heme electron transfer in bovine cytochrome c oxidase. , 2004, Biochimica et biophysica acta.

[13]  J. Heberle,et al.  The Molecular Mechanism of Membrane Proteins Probed by Evanescent Infrared Waves , 2004, Chembiochem : a European journal of chemical biology.

[14]  R. Gennis Coupled proton and electron transfer reactions in cytochrome oxidase. , 2004, Frontiers in bioscience : a journal and virtual library.

[15]  R. Gennis,et al.  Redox-coupled proton translocation in biological systems: Proton shuttling in cytochrome c oxidase , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[16]  R. Gennis Some recent contributions of FTIR difference spectroscopy to the study of cytochrome oxidase1 , 2003, FEBS letters.

[17]  S. Tatulian Attenuated total reflection Fourier transform infrared spectroscopy: a method of choice for studying membrane proteins and lipids. , 2003, Biochemistry.

[18]  P. Brzezinski,et al.  Redox-driven proton pumping by heme-copper oxidases. , 2003, Biochimica et biophysica acta.

[19]  A. Puustinen,et al.  ATR-FTIR spectroscopy of the P(M) and F intermediates of bovine and Paracoccus denitrificans cytochrome c oxidase. , 2003, Biochemistry.

[20]  R. Gennis,et al.  Direct observation of protonation reactions during the catalytic cycle of cytochrome c oxidase , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[21]  S. Yoshikawa,et al.  FTIR detection of protonation/deprotonation of key carboxyl side chains caused by redox change of the Cu(A)-heme a moiety and ligand dissociation from the heme a3-Cu(B) center of bovine heart cytochrome c oxidase. , 2003, Journal of the American Chemical Society.

[22]  B. Barquera,et al.  Substitutions for glutamate 101 in subunit II of cytochrome c oxidase from Rhodobacter sphaeroides result in blocking the proton-conducting K-channel. , 2003, Biochemistry.

[23]  A. Katsonouri,et al.  Intramolecular proton-transfer reactions in a membrane-bound proton pump: the effect of pH on the peroxy to ferryl transition in cytochrome c oxidase. , 2003, Biochemistry.

[24]  P. Rich,et al.  ATR-FTIR difference spectroscopy of the P(M) intermediate of bovine cytochrome c oxidase. , 2002, Biochimica et biophysica acta.

[25]  S. Iwata,et al.  The X-ray crystal structures of wild-type and EQ(I-286) mutant cytochrome c oxidases from Rhodobacter sphaeroides. , 2002, Journal of molecular biology.

[26]  M. Lübben,et al.  Electron transfer at the low-spin heme b of cytochrome bo(3) induces an environmental change of the catalytic enhancer glutamic acid-286. , 2002, Biochimica et biophysica acta.

[27]  P. Rich,et al.  Attenuated total reflection Fourier transform infrared studies of redox changes in bovine cytochrome c oxidase: resolution of the redox Fourier transform infrared difference spectrum of heme a(3). , 2002, Biochemistry.

[28]  R. Gennis,et al.  A mutation in subunit I of cytochrome oxidase from Rhodobacter sphaeroides results in an increase in steady-state activity but completely eliminates proton pumping. , 2002, Biochemistry.

[29]  P. Brzezinski,et al.  Transient binding of CO to Cu(B) in cytochrome c oxidase is dynamically linked to structural changes around a carboxyl group: a time-resolved step-scan Fourier transform infrared investigation. , 2002, Biophysical journal.

[30]  R. Gennis,et al.  Perfusion‐induced redox differences in cytochrome c oxidase: ATR/FT‐IR spectroscopy , 2001, FEBS letters.

[31]  M. Wikström,et al.  Role of the PR intermediate in the reaction of cytochrome c oxidase with O2. , 2001, Biochemistry.

[32]  Manuela M. Pereira,et al.  A novel scenario for the evolution of haem-copper oxygen reductases. , 2001, Biochimica et biophysica acta.

[33]  A. Barth,et al.  Reaction-induced infrared difference spectroscopy for the study of protein reaction mechanisms. , 2001, Biochemistry.

[34]  S. Yoshikawa,et al.  X-ray structure and the reaction mechanism of bovine heart cytochrome c oxidase. , 2000, Journal of inorganic biochemistry.

[35]  R. Gennis,et al.  Proton transfer from glutamate 286 determines the transition rates between oxygen intermediates in cytochrome c oxidase. , 2000, Biochimica et biophysica acta.

[36]  E. Bamberg,et al.  Tracing the D-pathway in reconstituted site-directed mutants of cytochrome c oxidase from Paracoccus denitrificans. , 2000, Biochemistry.

[37]  H. Michel,et al.  Cytochrome c oxidase: catalytic cycle and mechanisms of proton pumping--a discussion. , 1999, Biochemistry.

[38]  K. Gerwert,et al.  Molecular Reaction Mechanisms of Proteins Monitored by Time-Resolved FTIR-Spectroscopy , 1999, Biological chemistry.

[39]  R. Gennis Multiple proton-conducting pathways in cytochrome oxidase and a proposed role for the active-site tyrosine , 1998 .

[40]  H. Michel,et al.  Involvement of glutamic acid 278 in the redox reaction of the cytochrome c oxidase from Paracoccus denitrificans investigated by FTIR spectroscopy. , 1998, Biochemistry.

[41]  A. Puustinen,et al.  Fourier transform infrared evidence for connectivity between CuB and glutamic acid 286 in cytochrome bo3 from Escherichia coli. , 1997, Biochemistry.

[42]  R. Gennis,et al.  The roles of the two proton input channels in cytochrome c oxidase from Rhodobacter sphaeroides probed by the effects of site-directed mutations on time-resolved electrogenic intraprotein proton transfer. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[43]  S. Ferguson-Miller,et al.  Heme/Copper Terminal Oxidases. , 1996, Chemical reviews.

[44]  T. Tomizaki,et al.  The Whole Structure of the 13-Subunit Oxidized Cytochrome c Oxidase at 2.8 Å , 1996, Science.

[45]  Hartmut Michel,et al.  Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans , 1995, Nature.

[46]  R. Gennis,et al.  Rapid purification of wildtype and mutant cytochrome c oxidase from Rhodobacter sphaeroides by Ni2+‐NTA affinity chromatography , 1995, FEBS letters.

[47]  B. Barquera,et al.  The superfamily of heme-copper respiratory oxidases , 1994, Journal of bacteriology.

[48]  K Schulten,et al.  Molecular dynamics study of bacteriorhodopsin and artificial pigments. , 1994, Biochemistry.

[49]  R. Gennis,et al.  Insight into the active-site structure and function of cytochrome oxidase by analysis of site-directed mutants of bacterial cytochromeaa3 and cytochromebo , 1993, Journal of bioenergetics and biomembranes.

[50]  W. Woodruff,et al.  Flow-flash, time-resolved resonance Raman spectroscopy of the oxidation of reduced and of mixed valence cytochrome oxidase by dioxygen. , 1985, Journal of inorganic biochemistry.