Remarks on Zero Viscosity Limit for Nonstationary Navier- Stokes Flows with Boundary

This paper is concerned with the question of convergence of the nonstationary, incompressible Navier-Stokes flow u = u v to the Euler flow u as the viscosity v tends to zero. If the underlying space domain is all of Rm, the convergence has been proved by several authors under appropriate assumptions on the convergence of the data (initial condition and external force); see Golovkin [1] and McGrath [2] for m = 2 and all time, and Swann [3] and the author [4,5] for m = 3 and short time. The case m ⩾ 4 can be handled in the same way; in fact, the simple method given in [5] applies to any dimension. All these results refer to strong solutions (or even classical solutions, depending on the data) of the Navier-Stokes equation.

[1]  J. G. Heywood On uniqueness questions in the theory of viscous flow , 1976 .

[2]  R. Temam On the Euler equations of incompressible perfect fluids , 1975 .

[3]  Tosio Kato Nonstationary flows of viscous and ideal fluids in R3 , 1972 .

[4]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[5]  R. Temam Navier-Stokes Equations , 1977 .

[6]  Tosio Kato,et al.  Nonlinear evolution equations and the Euler flow , 1984 .

[7]  Haim Brezis,et al.  Remarks on the Euler equation , 1974 .

[8]  H. Swann The convergence with vanishing viscosity of nonstationary Navier-Stokes flow to ideal flow in ₃ , 1971 .

[9]  J. Marsden,et al.  Groups of diffeomorphisms and the motion of an incompressible fluid , 1970 .

[10]  E. Hopf,et al.  Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Erhard Schmidt zu seinem 75. Geburtstag gewidmet , 1950 .

[11]  Tosio Kato,et al.  Quasi-linear equations of evolution, with applications to partial differential equations , 1975 .

[12]  Jean Leray,et al.  Sur le mouvement d'un liquide visqueux emplissant l'espace , 1934 .

[13]  F. J. McGrath Nonstationary plane flow of viscous and ideal fluids , 1968 .

[14]  川口 光年,et al.  O. A. Ladyzhenskaya: The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach Sci. Pub. New York-London, 1963, 184頁, 15×23cm, 3,400円. , 1964 .

[15]  E. Boschi Recensioni: J. L. Lions - Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod, Gauthier-Vi;;ars, Paris, 1969; , 1971 .

[16]  Tosio Kato,et al.  On classical solutions of the two-dimensional non-stationary Euler equation , 1967 .