Identifying the Parametric Occurrence of Multiple Steady States for some Biological Networks

Abstract We consider a problem from biological network analysis of determining regions in a parameter space over which there are multiple steady states for positive real values of variables and parameters. We describe multiple approaches to address the problem using tools from Symbolic Computation. We describe how progress was made to achieve semi-algebraic descriptions of the multistationarity regions of parameter space, and compare symbolic and numerical methods. The biological networks studied are models of the mitogen-activated protein kinases (MAPK) network which has already consumed considerable effort using special insights into its structure of corresponding models. Our main example is a model with 11 equations in 11 variables and 19 parameters, 3 of which are of interest for symbolic treatment. The model also imposes positivity conditions on all variables and parameters. We apply combinations of symbolic computation methods designed for mixed equality / inequality systems, specifically virtual substitution, lazy real triangularization and cylindrical algebraic decomposition, as well as a simplification technique adapted from Gaussian elimination and graph theory. We are able to determine semi-algebraic conditions for multistationarity of our main example over a 2-dimensional parameter space. We also study a second MAPK model and a symbolic grid sampling technique which can locate such regions in 3-dimensional parameter space.

[1]  Thomas Sturm,et al.  REDLOG: computer algebra meets computer logic , 1997, SIGS.

[2]  Nils Blüthgen,et al.  Competing docking interactions can bring about bistability in the MAPK cascade. , 2007, Biophysical journal.

[3]  Thomas Sturm Thirty Years of Virtual Substitution , 2018 .

[4]  Marek Kosta,et al.  New concepts for real quantifier elimination by virtual substitution , 2016 .

[5]  Volker Weispfenning,et al.  Quantifier Elimination for Real Algebra — the Quadratic Case and Beyond , 1997, Applicable Algebra in Engineering, Communication and Computing.

[6]  D Aspinall,et al.  Optimising Problem Formulation for Cylindrical Algebraic Decomposition , 2013 .

[7]  Adam W. Strzebonski,et al.  Solving Systems of Strict Polynomial Inequalities , 2000, J. Symb. Comput..

[8]  M E J Newman,et al.  Community structure in social and biological networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Matthew England,et al.  Using the Regular Chains Library to Build Cylindrical Algebraic Decompositions by Projecting and Lifting , 2014, ICMS.

[10]  N. Rashevsky Mathematical Biophysics: Physicomathematical Foundations Of Biology , 2012 .

[11]  Dima Grigoriev,et al.  Algorithms to Study Large Metabolic Network Dynamics , 2015 .

[12]  Matthew England,et al.  Improving the Use of Equational Constraints in Cylindrical Algebraic Decomposition , 2015, ISSAC.

[13]  B. F. Caviness,et al.  Quantifier Elimination and Cylindrical Algebraic Decomposition , 2004, Texts and Monographs in Symbolic Computation.

[14]  U. Bhalla,et al.  Emergent properties of networks of biological signaling pathways. , 1999, Science.

[15]  Christopher W. Brown QEPCAD B: a program for computing with semi-algebraic sets using CADs , 2003, SIGS.

[16]  H. Lyman Mathematical biophysics: Physico-mathematical foundations of biology: N. Rashevsky. Third revised edition. Two vols. Dover, New York, 1960. Vol. I, xxvi + 488 pp. $2.50. Vol. II, xii + 462 pp. $2.50 , 1961 .

[17]  Jörg Raisch,et al.  Multistationarity in the activation of a MAPK: parametrizing the relevant region in parameter space. , 2008, Mathematical biosciences.

[18]  Kenneth L. Ho,et al.  Numerical algebraic geometry for model selection and its application to the life sciences , 2015, Journal of The Royal Society Interface.

[19]  Daniel Lichtblau,et al.  Symbolic analysis of multiple steady states in a MAPK chemical reaction network , 2021, J. Symb. Comput..

[20]  Matthew England,et al.  Symbolic Versus Numerical Computation and Visualization of Parameter Regions for Multistationarity of Biological Networks , 2017, CASC.

[21]  Dima Grigoriev,et al.  Reduction Methods and Chaos for Quadratic Systems of Differential Equations , 2015 .

[22]  Volker Weispfenning,et al.  The Complexity of Linear Problems in Fields , 1988, Journal of symbolic computation.

[23]  Alicia Dickenstein,et al.  Toric dynamical systems , 2007, J. Symb. Comput..

[24]  Changbo Chen,et al.  Quantifier elimination by cylindrical algebraic decomposition based on regular chains , 2014, J. Symb. Comput..

[25]  Marc Moreno Maza,et al.  On the Theories of Triangular Sets , 1999, J. Symb. Comput..

[26]  Mercedes Pérez Millán,et al.  MAPK's networks and their capacity for multistationarity due to toric steady states. , 2014, Mathematical biosciences.

[27]  Changbo Chen,et al.  Computing cylindrical algebraic decomposition via triangular decomposition , 2009, ISSAC '09.

[28]  Fabrizio Grandoni,et al.  Distributed weighted vertex cover via maximal matchings , 2005, TALG.

[29]  Volker Weispfenning,et al.  Quantifier elimination for real algebra—the cubic case , 1994, ISSAC '94.

[30]  Matthew England,et al.  Using Machine Learning to Improve Cylindrical Algebraic Decomposition , 2018, Math. Comput. Sci..

[31]  Jan Verschelde Polynomial homotopy continuation with PHCpack , 2011, ACCA.

[32]  Rüdiger Loos,et al.  Applying Linear Quantifier Elimination , 1993, Comput. J..

[33]  Dongming Wang,et al.  Stability analysis of biological systems with real solution classification , 2005, ISSAC.

[34]  Matthew England,et al.  Using Machine Learning to Decide When to Precondition Cylindrical Algebraic Decomposition with Groebner Bases , 2016, 2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC).

[35]  U. Bhalla,et al.  Complexity in biological signaling systems. , 1999, Science.

[36]  Daniel A. Brake,et al.  Paramotopy: Parameter Homotopies in Parallel , 2018, ICMS.

[37]  Thomas Sturm,et al.  A Survey of Some Methods for Real Quantifier Elimination, Decision, and Satisfiability and Their Applications , 2017, Math. Comput. Sci..

[38]  Thilo Gross,et al.  Bifurcations and chaos in the MAPK signaling cascade. , 2010, Journal of theoretical biology.

[39]  M. Feinberg Chemical reaction network structure and the stability of complex isothermal reactors—I. The deficiency zero and deficiency one theorems , 1987 .

[40]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[41]  Dima Grigoriev,et al.  Solving Systems of Polynomial Inequalities in Subexponential Time , 1988, J. Symb. Comput..

[42]  Melanie I. Stefan,et al.  BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models , 2010, BMC Systems Biology.

[43]  Matthew D. Johnston,et al.  A note on "MAPK networks and their capacity for multistationarity due to toric steady states" , 2014, 1407.5651.

[44]  Matthew England,et al.  Truth table invariant cylindrical algebraic decomposition , 2016, J. Symb. Comput..

[45]  Jonathan D. Hauenstein,et al.  What is numerical algebraic geometry , 2017 .

[46]  Changbo Chen,et al.  Triangular decomposition of semi-algebraic systems , 2013, J. Symb. Comput..

[47]  Andreas Seidl,et al.  Efficient projection orders for CAD , 2004, ISSAC '04.

[48]  Badal Joshi,et al.  A survey of methods for deciding whether a reaction network is multistationary , 2014, 1412.5257.

[49]  Bernhard O Palsson,et al.  The convex basis of the left null space of the stoichiometric matrix leads to the definition of metabolically meaningful pools. , 2003, Biophysical journal.

[50]  Carsten Conradi,et al.  Catalytic constants enable the emergence of bistability in dual phosphorylation , 2014, Journal of The Royal Society Interface.

[51]  Elisenda Feliu,et al.  Identifying parameter regions for multistationarity , 2016, PLoS Comput. Biol..

[52]  Alicia Dickenstein,et al.  The Structure of MESSI Biological Systems , 2016, SIAM J. Appl. Dyn. Syst..

[53]  Matthew England,et al.  A Case Study on the Parametric Occurrence of Multiple Steady States , 2017, ISSAC.

[54]  George E. Collins,et al.  Cylindrical Algebraic Decomposition I: The Basic Algorithm , 1984, SIAM J. Comput..

[55]  Thomas Sturm,et al.  Simplification of Quantifier-Free Formulae over Ordered Fields , 1997, J. Symb. Comput..

[56]  Matthew England,et al.  Applying machine learning to the problem of choosing a heuristic to select the variable ordering for cylindrical algebraic decomposition , 2014, CICM.

[57]  S. Schuster,et al.  Determining all extreme semi-positive conservation relations in chemical reaction systems: a test criterion for conservativity , 1991 .

[58]  Matthew England,et al.  The Complexity of Cylindrical Algebraic Decomposition with Respect to Polynomial Degree , 2016, CASC.

[59]  Matthew England,et al.  Cylindrical Algebraic Sub-Decompositions , 2014, Math. Comput. Sci..

[60]  Bernd Sturmfels,et al.  Algebraic Systems Biology: A Case Study for the Wnt Pathway , 2015, Bulletin of Mathematical Biology.

[61]  G. E. Collins,et al.  Quantifier Elimination by Cylindrical Algebraic Decomposition — Twenty Years of Progress , 1998 .

[62]  Hoon Hong,et al.  Testing Stability by Quantifier Elimination , 1997, J. Symb. Comput..

[63]  Scott McCallum Solving Polynomial Strict Inequalities Using Cylindrical Algebraic Decomposition , 1993, Comput. J..

[64]  Richard M. Karp,et al.  Reducibility among combinatorial problems" in complexity of computer computations , 1972 .

[65]  B. Kholodenko,et al.  Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades , 2004, The Journal of cell biology.