Hybrid functionals with local range separation.

Range-separated (screened) hybrid functionals provide a powerful strategy for incorporating nonlocal exact (Hartree-Fock-type) exchange into density functional theory. Existing implementations of range separation use a fixed system-independent screening parameter. Here, we propose a novel method that uses a position-dependent screening function. These locally range-separated hybrids add substantial flexibility for describing diverse electronic structures and satisfy a high-density scaling constraint better than the fixed screening approximation does.

[1]  A. Savin,et al.  Contribution to the electron distribution analysis. I. Shell structure of atoms , 1991 .

[2]  John P. Perdew,et al.  Exact differential equation for the density and ionization energy of a many-particle system , 1984 .

[3]  D. Truhlar,et al.  Erratum: Small representative benchmarks for thermochemical calculations (J. Phys. Chem. A (2003) 107A, (8997)) , 2004 .

[4]  A. Savin,et al.  On degeneracy, near-degeneracy and density functional theory , 1996 .

[5]  G. Scuseria,et al.  Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes , 2003 .

[6]  L. Reining,et al.  Electronic excitations: density-functional versus many-body Green's-function approaches , 2002 .

[7]  Jorge M. Seminario,et al.  Recent developments and applications of modern density functional theory , 1996 .

[8]  F. E. Jorge,et al.  ACCURATE UNIVERSAL GAUSSIAN BASIS SET FOR HYDROGEN THROUGH LANTHANUM GENERATED WITH THE GENERATOR COORDINATE HARTREE-FOCK METHOD , 1997 .

[9]  Michael J. Frisch,et al.  Achieving Linear Scaling for the Electronic Quantum Coulomb Problem , 1996, Science.

[10]  Jianmin Tao,et al.  Exchange and correlation in open systems of fluctuating electron number , 2007 .

[11]  Richard L. Martin,et al.  Spin-orbit splittings and energy band gaps calculated with the Heyd-Scuseria-Ernzerhof screened hybrid functional , 2006 .

[12]  J. Perdew,et al.  Hellmann-Feynman, virial, and scaling requisites for the exact universal density functionals. Shape of the correlation potential and diamagnetic susceptibility for atoms. , 1985, Physical review. A, General physics.

[13]  Donald G Truhlar,et al.  Benchmark database of barrier heights for heavy atom transfer, nucleophilic substitution, association, and unimolecular reactions and its use to test theoretical methods. , 2005, The journal of physical chemistry. A.

[14]  R. Dreizler,et al.  Density Functional Methods In Physics , 1985 .

[15]  Oded Hod,et al.  Electronic structure and stability of semiconducting graphene nanoribbons. , 2006, Nano letters.

[16]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[17]  G. Sperber Analysis of reduced density matrices in the coordinate representation. II. The structure of closed‐shell atoms in the restricted Hartree–Fock approximation , 1971 .

[18]  J. Ángyán,et al.  Hybrid functional with separated range , 2005 .

[19]  A. Szabo,et al.  Modern quantum chemistry , 1982 .

[20]  G. L. Oliver,et al.  Spin-density gradient expansion for the kinetic energy , 1979 .

[21]  A. Savin,et al.  Short-range exchange and correlation energy density functionals: beyond the local-density approximation. , 2004, The Journal of chemical physics.

[22]  Gustavo E Scuseria,et al.  Assessment and validation of a screened Coulomb hybrid density functional. , 2004, The Journal of chemical physics.

[23]  Benjamin G. Janesko,et al.  Generalized gradient approximation model exchange holes for range-separated hybrids. , 2008, The Journal of chemical physics.

[24]  L. Curtiss,et al.  Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation , 1997 .

[25]  Gustavo E. Scuseria,et al.  A quantitative study of the scaling properties of the Hartree–Fock method , 1995 .

[26]  G. Scuseria,et al.  Covalency in the actinide dioxides: Systematic study of the electronic properties using screened hybrid density functional theory , 2007 .

[27]  A. Görling,et al.  Efficient localized Hartree-Fock methods as effective exact-exchange Kohn-Sham methods for molecules , 2001 .

[28]  G. Scuseria,et al.  Assessment of a Middle-Range Hybrid Functional. , 2008, Journal of chemical theory and computation.

[29]  Richard L. Martin,et al.  Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. , 2005, The Journal of chemical physics.

[30]  Andreas Savin,et al.  Combining long-range configuration interaction with short-range density functionals , 1997 .

[31]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[32]  Michael J. Mehl,et al.  Easily Implementable Nonlocal Exchange-Correlation Energy Functional , 1981 .

[33]  G. Scuseria,et al.  Exact-exchange energy density in the gauge of a semilocal density functional approximation , 2007, 0710.3354.

[34]  G. Scuseria,et al.  Importance of short-range versus long-range Hartree-Fock exchange for the performance of hybrid density functionals. , 2006, The Journal of chemical physics.

[35]  Gustavo E. Scuseria,et al.  Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] , 2006 .

[36]  Gustavo E Scuseria,et al.  Efficient hybrid density functional calculations in solids: assessment of the Heyd-Scuseria-Ernzerhof screened Coulomb hybrid functional. , 2004, The Journal of chemical physics.

[37]  Lévy,et al.  Density-functional exchange correlation through coordinate scaling in adiabatic connection and correlation hole. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[38]  A. Savin,et al.  Combining multideterminantal wave functions with density functionals to handle near-degeneracy in atoms and molecules , 2002 .

[39]  G. Scuseria,et al.  Assessment of a long-range corrected hybrid functional. , 2006, The Journal of chemical physics.

[40]  Artur F Izmaylov,et al.  Influence of the exchange screening parameter on the performance of screened hybrid functionals. , 2006, The Journal of chemical physics.

[41]  Gustavo E. Scuseria,et al.  Local hybrid functionals , 2003 .

[42]  Davidson,et al.  Ground-state correlation energies for atomic ions with 3 to 18 electrons. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[43]  L. Curtiss,et al.  Assessment of Gaussian-3 and density functional theories for a larger experimental test set , 2000 .

[44]  L. Kleinman,et al.  Good semiconductor band gaps with a modified local-density approximation. , 1990, Physical review. B, Condensed matter.

[45]  Delhalle,et al.  Direct-space analysis of the Hartree-Fock energy bands and density of states for metallic extended systems. , 1987, Physical review. B, Condensed matter.

[46]  K. Hirao,et al.  A long-range correction scheme for generalized-gradient-approximation exchange functionals , 2001 .

[47]  Donald G. Truhlar,et al.  Development and Assessment of a New Hybrid Density Functional Model for Thermochemical Kinetics , 2004 .

[48]  H. Monkhorst,et al.  Hartree-Fock density of states for extended systems , 1979 .

[49]  P. Gori-Giorgi,et al.  Scaling relations, virial theorem, and energy densities for long-range and short-range density functionals , 2006, physics/0605023.

[50]  David Pines,et al.  Elementary Excitations In Solids , 1964 .

[51]  Gustavo E Scuseria,et al.  Theoretical study of CeO2 and Ce2O3 using a screened hybrid density functional. , 2006, The Journal of chemical physics.

[52]  Jianmin Tao,et al.  Meta-generalized gradient approximation for the exchange-correlation hole with an application to the jellium surface energy , 2006 .

[53]  G. Scuseria,et al.  Tests of functionals for systems with fractional electron number. , 2007, The Journal of chemical physics.

[54]  Donald G. Truhlar,et al.  Small Representative Benchmarks for Thermochemical Calculations , 2003 .

[55]  R. D. Adamson,et al.  A family of attenuated Coulomb operators , 1996 .

[56]  Vogl,et al.  Generalized Kohn-Sham schemes and the band-gap problem. , 1996, Physical review. B, Condensed matter.

[57]  Andreas Savin,et al.  Density functionals for the Yukawa electron-electron interaction , 1995 .

[58]  A. Savin,et al.  Density Functionals for Correlation Energies of Atoms and Molecules , 1985 .

[59]  R. Baer,et al.  A well-tempered density functional theory of electrons in molecules. , 2007, Physical chemistry chemical physics : PCCP.

[60]  G. Iafrate,et al.  Construction of An Accurate Self-interaction-corrected Correlation Energy Functional Based on An Electron Gas with A Gap , 1999 .

[61]  G. Scuseria,et al.  Analytic evaluation of energy gradients for the single, double and linearized triple excitation coupled-cluster CCSDT-1 wavefunction: Theory and applications , 1988 .