Resilience of Amazon forests emerges from plant trait diversity

Application of a terrestrial biogeochemical model that simulates diverse forest communities suggests that plant trait diversity may enable the Amazon rainforest to adjust to new climate conditions via a process of ecological sorting.

[1]  Markus Reichstein,et al.  Linking plant and ecosystem functional biogeography , 2014, Proceedings of the National Academy of Sciences.

[2]  Frans Bongers,et al.  Functional diversity changes during tropical forest succession , 2012 .

[3]  Campbell O. Webb,et al.  Regional and phylogenetic variation of wood density across 2456 Neotropical tree species. , 2006, Ecological applications : a publication of the Ecological Society of America.

[4]  Sean C. Thomas,et al.  The worldwide leaf economics spectrum , 2004, Nature.

[5]  Simon Scheiter,et al.  Next-generation dynamic global vegetation models: learning from community ecology. , 2013, The New phytologist.

[6]  E. Borer,et al.  Anthropogenic environmental changes affect ecosystem stability via biodiversity , 2015, Science.

[7]  O. Phillips,et al.  Drought impact on forest carbon dynamics and fluxes in Amazonia , 2015, Nature.

[8]  Jens Kattge,et al.  The emergence and promise of functional biogeography , 2014, Proceedings of the National Academy of Sciences.

[9]  John F. B. Mitchell,et al.  The next generation of scenarios for climate change research and assessment , 2010, Nature.

[10]  Anja Rammig,et al.  Leaf and stem economics spectra drive diversity of functional plant traits in a dynamic global vegetation model , 2015, Global change biology.

[11]  W. Lucht,et al.  Terrestrial vegetation and water balance-hydrological evaluation of a dynamic global vegetation model , 2004 .

[12]  S. Wright,et al.  The global spectrum of plant form and function , 2015, Nature.

[13]  I. C. Prentice,et al.  Evaluation of the terrestrial carbon cycle, future plant geography and climate‐carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs) , 2008 .

[14]  C. S. Holling Resilience and Stability of Ecological Systems , 1973 .

[15]  S. Higgins,et al.  TRY – a global database of plant traits , 2011, Global Change Biology.

[16]  F. Rovero,et al.  Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics , 2013 .

[17]  Roberta E. Martin,et al.  Amazonian functional diversity from forest canopy chemical assembly , 2014, Proceedings of the National Academy of Sciences.

[18]  I. C. Prentice,et al.  Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model , 2003 .

[19]  L. Gunderson Ecological Resilience—In Theory and Application , 2000 .

[20]  Stephen Sitch,et al.  Simulated resilience of tropical rainforests to CO2-induced climate change , 2013 .

[21]  Benjamin Smith,et al.  Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space , 2008 .

[22]  C. Violle,et al.  Let the concept of trait be functional , 2007 .

[23]  Francis K. C. Hui,et al.  Plant functional traits have globally consistent effects on competition , 2015, Nature.

[24]  Takehiro Sasaki,et al.  Response diversity determines the resilience of ecosystems to environmental change , 2013, Biological reviews of the Cambridge Philosophical Society.

[25]  Kelly A. Carscadden,et al.  Beyond species: functional diversity and the maintenance of ecological processes and services , 2011 .

[26]  D. Jenkins Estimating ecological production from biomass , 2015 .

[27]  P. Leadley,et al.  Impacts of climate change on the future of biodiversity. , 2012, Ecology letters.

[28]  L. Poorter,et al.  The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. , 2010, The New phytologist.

[29]  C. Müller,et al.  Modelling the role of agriculture for the 20th century global terrestrial carbon balance , 2007 .

[30]  Kalle Ruokolainen,et al.  Hyperdominance in Amazonian forest carbon cycling , 2015, Nature Communications.

[31]  Petra Döll,et al.  Validation of a new global 30-min drainage direction map , 2002 .

[32]  Frans Bongers,et al.  Leaf traits are good predictors of plant performance across 53 rain forest species. , 2006, Ecology.

[33]  Wolfgang Lucht,et al.  Contribution of permafrost soils to the global carbon budget , 2013 .

[34]  P. Reich,et al.  Biodiversity and ecosystem stability in a decade-long grassland experiment , 2006, Nature.

[35]  Christopher Baraloto,et al.  Decoupled leaf and stem economics in rain forest trees. , 2010, Ecology letters.