Accurate Strategies for K.A.M. Bounds and Their Implementation

We study perturbative expansions for quasi-periodic solutions of non—linear systems. We describe how to construct and implement algorithms that prove convergence of these expansions for values of the perturbation parameter as close to optimal as desired. The method is based on a constructive form of K.A.M. theory and implemented using interval arithmetic. For some cases, the algorithms have been run on a computer yielding results better than 90% of optimal.

[1]  D. Braess,et al.  On the numerical treatment of a small divisor problem , 1982 .

[2]  C. Liverani,et al.  Improved KAM estimates for the Siegel radius , 1986 .

[3]  J. Eckmann,et al.  A computer-assisted proof of universality for area-preserving maps , 1984 .

[4]  I. C. Percival,et al.  Converse KAM: Theory and practice , 1985 .

[5]  Luis Seco,et al.  Lower Bounds for the Ground State Energy of Atoms. , 1989 .

[6]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[7]  Richard S. Hamilton,et al.  The inverse function theorem of Nash and Moser , 1982 .

[8]  Oscar E. Lanford,et al.  Computer-assisted proofs in analysis , 1984 .

[9]  H. Brolin Invariant sets under iteration of rational functions , 1965 .

[10]  S. Lefschetz,et al.  Contributions to the Theory of Nonlinear Oscillations, IV , 1960, The Mathematical Gazette.

[11]  C. Liverani,et al.  Some KAM estimates for the Siegel centre problem , 1984 .

[12]  J. Mather Non-existence of invariant circles , 1984, Ergodic Theory and Dynamical Systems.

[13]  Jürgen Moser Is the solar system stable? , 1978 .

[14]  E. Zehnder,et al.  Generalized implicit function theorems with applications to some small divisor problems, I , 1976 .

[15]  Y. Katznelson,et al.  The differentiability of the conjugation of certain diffeomorphisms of the circle , 1989, Ergodic Theory and Dynamical Systems.

[16]  K. Meyer,et al.  The Stability of the Lagrange Triangular Point and a Theorem of Arnold , 1986 .

[17]  Luigi Chierchia,et al.  Construction of analytic KAM surfaces and effective stability bounds , 1988 .

[18]  M. R. Herman Sur la Conjugaison Différentiable des Difféomorphismes du Cercle a des Rotations , 1979 .

[19]  H. Rüssmann On a new proof of Moser's twist mapping theorem , 1976 .

[20]  M. R. Herman,et al.  Sur les courbes invariantes par les difféomorphismes de l'anneau. 2 , 1983 .

[21]  Vladimir Igorevich Arnold,et al.  Geometrical Methods in the Theory of Ordinary Differential Equations , 1983 .

[22]  Jean-Pierre Eckmann,et al.  Computer Methods and Borel Summability Applied to Feigenbaum's Equation , 1985 .

[23]  J. Yoccoz,et al.  Conjugaison différentiable des difféomorphismes du cercle dont le nombre de rotation vérifie une condition diophantienne , 1984 .

[24]  Michael R. Herman,et al.  Simple proofs of local conjugacy theorems for diffeomorphisms of the circle with almost every rotation number , 1985 .

[25]  A. Katok Minimal Orbits for Small Perturbations of Completely Integrable Hamiltonian Systems , 1992 .

[26]  C. Simó,et al.  An obstruction method for the destruction of invariant curves , 1987 .

[27]  Eduard Zehnder,et al.  KAM theory in configuration space , 1989 .

[28]  J. Stark An exhaustive criterion for the non-existence of invariant circles for area-preserving twist maps , 1988 .

[29]  H. Poincaré,et al.  Les méthodes nouvelles de la mécanique céleste , 1899 .

[30]  John M. Greene,et al.  A method for determining a stochastic transition , 1979, Hamiltonian Dynamical Systems.

[31]  S. Aubry The twist map, the extended Frenkel-Kontorova model and the devil's staircase , 1983 .

[32]  C. Siegel,et al.  Iteration of Analytic Functions , 1942 .

[33]  J. Dieudonne Foundations of Modern Analysis , 1969 .

[34]  Donald Ervin Knuth,et al.  The Art of Computer Programming, Volume II: Seminumerical Algorithms , 1970 .