Resolution of carbon metabolism and sulfur-oxidation pathways of Metallosphaera cuprina Ar-4 via comparative proteomics.

[1]  B. Siebers,et al.  Carbohydrate Metabolism in Archaea: Current Insights into Unusual Enzymes and Pathways and Their Regulation , 2014, Microbiology and Molecular Reviews.

[2]  P. Wright,et al.  A cool tool for hot and sour Archaea: Proteomics of Sulfolobus solfataricus , 2013, Proteomics.

[3]  Hans V Westerhoff,et al.  Intermediate instability at high temperature leads to low pathway efficiency for an in vitro reconstituted system of gluconeogenesis in Sulfolobus solfataricus , 2013, The FEBS journal.

[4]  M. Wagner,et al.  Unraveling the function of the two Entner–Doudoroff branches in the thermoacidophilic Crenarchaeon Sulfolobus solfataricus P2 , 2013, The FEBS journal.

[5]  B. Siebers,et al.  Unraveling the function of paralogs of the aldehyde dehydrogenase super family from Sulfolobus solfataricus , 2013, Extremophiles.

[6]  R. K. Bennett,et al.  Role of 4-Hydroxybutyrate-CoA Synthetase in the CO2 Fixation Cycle in Thermoacidophilic Archaea* , 2012, The Journal of Biological Chemistry.

[7]  Johannes Griss,et al.  The Proteomics Identifications (PRIDE) database and associated tools: status in 2013 , 2012, Nucleic Acids Res..

[8]  Paul Blum,et al.  Metal Resistance and Lithoautotrophy in the Extreme Thermoacidophile Metallosphaera sedula , 2012, Journal of bacteriology.

[9]  Robert M. Kelly,et al.  Epimerase (Msed_0639) and Mutase (Msed_0638 and Msed_2055) Convert (S)-Methylmalonyl-Coenzyme A (CoA) to Succinyl-CoA in the Metallosphaera sedula 3-Hydroxypropionate/4-Hydroxybutyrate Cycle , 2012, Applied and Environmental Microbiology.

[10]  P. Haferkamp Biochemical studies of enzymes involved in glycolysis of the thermoacidophilic crenarchaeon Sulfolobus solfataricus , 2011 .

[11]  Daiki Hattori,et al.  Structural basis for the bifunctionality of fructose-1,6-bisphosphate aldolase/phosphatase , 2011, Nature.

[12]  Shuangjiang Liu,et al.  Metallosphaera cuprina sp. nov., an acidothermophilic, metal-mobilizing archaeon. , 2011, International journal of systematic and evolutionary microbiology.

[13]  Shengyue Wang,et al.  Complete Genome Sequence of Metallosphaera cuprina, a Metal Sulfide-Oxidizing Archaeon from a Hot Spring , 2011, Journal of bacteriology.

[14]  M. Weiß,et al.  Identification of Missing Genes and Enzymes for Autotrophic Carbon Fixation in Crenarchaeota , 2010, Journal of bacteriology.

[15]  W. Eisenreich,et al.  Labeling and Enzyme Studies of the Central Carbon Metabolism in Metallosphaera sedula , 2010, Journal of bacteriology.

[16]  G. Fuchs,et al.  Fructose 1,6-bisphosphate aldolase/phosphatase may be an ancestral gluconeogenic enzyme , 2010, Nature.

[17]  R. Kelly,et al.  Impact of Molecular Hydrogen on Chalcopyrite Bioleaching by the Extremely Thermoacidophilic Archaeon Metallosphaera sedula , 2010, Applied and Environmental Microbiology.

[18]  R. Kelly,et al.  Physiological Versatility of the Extremely Thermoacidophilic Archaeon Metallosphaera sedula Supported by Transcriptomic Analysis of Heterotrophic, Autotrophic, and Mixotrophic Growth , 2009, Applied and Environmental Microbiology.

[19]  C. Schleper,et al.  “Hot standards” for the thermoacidophilic archaeon Sulfolobus solfataricus , 2009, Extremophiles.

[20]  Raquel Quatrini,et al.  Extending the models for iron and sulfur oxidation in the extreme Acidophile Acidithiobacillus ferrooxidans , 2009, BMC Genomics.

[21]  Yulong Shen,et al.  A MOFRL family glycerate kinase from the thermophilic crenarchaeon, Sulfolobus tokodaii, with unique enzymatic properties , 2009, Biotechnology Letters.

[22]  D. Wolters,et al.  Physiological adaptation of Corynebacterium glutamicum to benzoate as alternative carbon source – a membrane proteome‐centric view , 2009, Proteomics.

[23]  Filipa L. Sousa,et al.  Structural and functional insights into sulfide:quinone oxidoreductase. , 2009, Biochemistry.

[24]  G. Rákhely,et al.  A novel NADPH-dependent oxidoreductase with a unique domain structure in the hyperthermophilic Archaeon, Thermococcus litoralis. , 2008, FEMS microbiology letters.

[25]  G. Fuchs,et al.  3-Hydroxypropionyl-Coenzyme A Synthetase from Metallosphaera sedula, an Enzyme Involved in Autotrophic CO2 Fixation , 2007, Journal of bacteriology.

[26]  G. Fuchs,et al.  A 3-Hydroxypropionate/4-Hydroxybutyrate Autotrophic Carbon Dioxide Assimilation Pathway in Archaea , 2007, Science.

[27]  P. Blum,et al.  The Genome Sequence of the Metal-Mobilizing, Extremely Thermoacidophilic Archaeon Metallosphaera sedula Provides Insights into Bioleaching-Associated Metabolism , 2007, Applied and Environmental Microbiology.

[28]  K. Kamimura,et al.  Identification of a gene encoding a tetrathionate hydrolase in Acidithiobacillus ferrooxidans. , 2007, Journal of biotechnology.

[29]  P. Schönheit,et al.  Characterization of cofactor-dependent and cofactor-independent phosphoglycerate mutases from Archaea , 2007, Extremophiles.

[30]  Michael W. W. Adams,et al.  Insights into the Metabolism of Elemental Sulfur by the Hyperthermophilic Archaeon Pyrococcus furiosus: Characterization of a Coenzyme A- Dependent NAD(P)H Sulfur Oxidoreductase , 2007, Journal of bacteriology.

[31]  G. Fuchs,et al.  Malonyl-Coenzyme A Reductase in the Modified 3-Hydroxypropionate Cycle for Autotrophic Carbon Fixation in Archaeal Metallosphaera and Sulfolobus spp , 2006, Journal of bacteriology.

[32]  Frank Fischer,et al.  Toward the Complete Membrane Proteome , 2006, Molecular & Cellular Proteomics.

[33]  P. Schönheit,et al.  Glyceraldehyde dehydrogenases from the thermoacidophilic euryarchaeota Picrophilus torridus and Thermoplasma acidophilum, key enzymes of the non‐phosphorylative Entner–Doudoroff pathway, constitute a novel enzyme family within the aldehyde dehydrogenase superfamily , 2006, FEBS letters.

[34]  Thijs J. G. Ettema,et al.  The semi-phosphorylative Entner-Doudoroff pathway in hyperthermophilic archaea: a re-evaluation. , 2005, The Biochemical journal.

[35]  R. Garrett,et al.  The Genome of Sulfolobus acidocaldarius, a Model Organism of the Crenarchaeota , 2005, Journal of bacteriology.

[36]  G. Taylor,et al.  Gluconate dehydratase from the promiscuous Entner–Doudoroff pathway in Sulfolobus solfataricus , 2004, FEBS letters.

[37]  E. Pohl,et al.  Structural Basis of allosteric regulation and substrate specificity of the non-phosphorylating glyceraldehyde 3-Phosphate dehydrogenase from Thermoproteus tenax. , 2004, Journal of molecular biology.

[38]  S. Datta,et al.  Whole-Genome DNA Microarray Analysis of a Hyperthermophile and an Archaeon: Pyrococcus furiosus Grown on Carbohydrates or Peptides , 2003, Journal of bacteriology.

[39]  R. Hensel,et al.  Role of two different glyceraldehyde-3-phosphate dehydrogenases in controlling the reversible Embden–Meyerhof–Parnas pathway in Thermoproteus tenax: regulation on protein and transcript level , 2001, Extremophiles.

[40]  S. Ragsdale,et al.  The Role of Pyruvate Ferredoxin Oxidoreductase in Pyruvate Synthesis during Autotrophic Growth by the Wood-Ljungdahl Pathway* , 2000, The Journal of Biological Chemistry.

[41]  S. Kardinahl,et al.  The strict molybdate-dependence of glucose-degradation by the thermoacidophile Sulfolobus acidocaldarius reveals the first crenarchaeotic molybdenum containing enzyme--an aldehyde oxidoreductase. , 1999, European journal of biochemistry.

[42]  V. Wendisch,et al.  Carbohydrate metabolism in Thermoproteus tenax: in vivo utilization of the non-phosphorylative Entner-Doudoroff pathway and characterization of its first enzyme, glucose dehydrogenase , 1997, Archives of Microbiology.

[43]  P. Schönheit,et al.  Catalytic properties, molecular composition and sequence alignments of pyruvate: ferredoxin oxidoreductase from the methanogenic archaeon Methanosarcina barkeri (strain Fusaro). , 1996, European journal of biochemistry.

[44]  T. Schäfer,et al.  Gluconeogenesis from pyruvate in the hyperthermophilic archaeon Pyrococcus furiosus: involvement of reactions of the Embden-Meyerhof pathway , 1993, Archives of Microbiology.

[45]  Thijs J. G. Ettema,et al.  The non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN) of Sulfolobus solfataricus: a key-enzyme of the semi-phosphorylative branch of the Entner–Doudoroff pathway , 2007, Extremophiles.

[46]  E. Lindström,et al.  Localization, purification and properties of a tetrathionate hydrolase from Acidithiobacillus caldus. , 2004, European journal of biochemistry.