A hybrid algorithm for solving minimization problem over (R,S)-symmetric matrices with the matrix inequality constraint

In this paper, we consider the following minimization problem:where , , , and are given. An efficient inequality relaxation technique is presented to relax the matrix inequality constraint so that there is an optimal solution which is (R,S)-symmetric that minimize , and also satisfies the corrected matrix inequality constraint. A hybrid algorithm with convergence analysis is given to solve this problem. Numerical examples show that the algorithm requires less CPU times when compared with some other methods.

[1]  Chih-Jen Lin,et al.  Newton's Method for Large Bound-Constrained Optimization Problems , 1999, SIAM J. Optim..

[2]  Hsin-Chu Chen Generalized Reflexive Matrices: Special Properties and Applications , 1998, SIAM J. Matrix Anal. Appl..

[3]  M. Raydan,et al.  Dykstra's algorithm for constrained least-squares rectangular matrix problems , 1998 .

[4]  William F. Trench,et al.  Minimization problems for (R,S)-symmetric and (R,S)-skew symmetric matrices , 2004 .

[5]  F. Don On the symmetric solutions of a linear matrix equation , 1987 .

[6]  José Mario Martínez,et al.  Augmented Lagrangian method with nonmonotone penalty parameters for constrained optimization , 2011, Computational Optimization and Applications.

[7]  José Mario Martínez,et al.  Nonmonotone Spectral Projected Gradient Methods on Convex Sets , 1999, SIAM J. Optim..

[8]  P. G. Ciarlet,et al.  Introduction to Numerical Linear Algebra and Optimisation , 1989 .

[9]  Xi-Yan Hu,et al.  The skew-symmetric orthogonal solutions of the matrix equation AX=B☆ , 2005 .

[10]  Xi-Yan Hu,et al.  Numerical solutions of AXB = C for centrosymmetric matrix X under a specified submatrix constraint , 2011, Numer. Linear Algebra Appl..

[11]  Nicholas J. Higham,et al.  The symmetric procrustes problem , 1988 .

[12]  J. Moreau Convexity and duality , 1966 .

[13]  Sanjay Mehrotra,et al.  On the Implementation of a Primal-Dual Interior Point Method , 1992, SIAM J. Optim..

[14]  Christopher R. H. Hanusa Pseudo-centrosymmetric matrices, with applications to counting perfect matchings , 2006 .

[15]  Tommy Elfving,et al.  A Constrained Procrustes Problem , 1997, SIAM J. Matrix Anal. Appl..

[16]  Guo-Lin Li,et al.  Mirrorsymmetric Matrices, Their Basic Properties, and an Application on Odd/Even-Mode Decomposition of Symmetric Multiconductor Transmission Lines , 2002, SIAM J. Matrix Anal. Appl..

[17]  Junfeng Lu,et al.  Matrix iterative solutions to the least squares problem of BXAT=F with some linear constraints , 2007, Appl. Math. Comput..

[18]  J. Weaver Centrosymmetric (Cross-Symmetric) Matrices, Their Basic Properties, Eigenvalues, and Eigenvectors , 1985 .

[19]  Roger A. Horn,et al.  SOLUTION OF LINEAR MATRIX EQUATIONS IN A *CONGRUENCE CLASS § , 2005 .

[20]  Zhen-yun Peng,et al.  An efficient iterative method for solving the matrix equation AXB + CYD = E , 2006, Numer. Linear Algebra Appl..

[21]  William W. Hager,et al.  A New Active Set Algorithm for Box Constrained Optimization , 2006, SIAM J. Optim..

[22]  Lei Wu,et al.  The Re-positive definite solutions to the matrix inverse problem AX=B , 1992 .

[23]  Abderrahman Bouhamidi,et al.  Convex constrained optimization for large-scale generalized Sylvester equations , 2011, Comput. Optim. Appl..

[24]  José Mario Martínez,et al.  The boundedness of penalty parameters in an augmented Lagrangian method with constrained subproblems , 2012, Optim. Methods Softw..

[25]  W. F. Trench,et al.  Inverse Eigenproblems and Associated Approximation Problems for Matrices with Generalized Symmetry or Skew Symmetry , 2003 .

[26]  Z. W. Chen,et al.  Nonmonotone Trust-Region Method for Nonlinear Programming with General Constraints and Simple Bounds , 2004 .

[27]  Xi-Yan Hu,et al.  Least-square solutions for inverse problems of centrosymmetric matrices☆ , 2003 .

[28]  Xi-Yan Hu,et al.  The reflexive and anti-reflexive solutions of the matrix equation AX = B , 2003 .

[29]  William F. Trench Hermitian, Hermitian -Symmetric, and Hermitian -Skew Symmetric Procrustes Problems , 2004 .

[30]  Dai Hua On the symmetric solutions of linear matrix equations , 1990 .