Continuous data assimilation for the three-dimensional Navier-Stokes-α model

© 2016 - IOS Press and the authors. All rights reserved. Motivated by the presence of a finite number of determining parameters (degrees of freedom) such as modes, nodes and local spatial averages for dissipative dynamical systems, we present here a continuous data assimilation algorithm for three-dimensional viscous hydrodynamic models. However, to validate the convergence of this algorithm our proofs require the existence of uniform global bounds on the gradients of the solutions of the underlying system in terms of certain combinations of the physical parameters (such as kinematic viscosity, the size of the domain and the forcing term). Therefore our proofs cannot be applied to the three-dimensional Navier-Stokes equations; instead we demonstrate the implementation of this algorithm, for instance, in the context of the three-dimensional Navier-Stokes-α equations. This algorithm consists of introducing a nudging process through a general type of approximation interpolation operator (which is constructed from observational measurements) that synchronizes the large spatial scales of the approximate solutions with those of unknown solutions of the Navier-Stokes-α equations corresponding to these measurements. Our main result provides conditions on the finite-dimensional spatial resolution of the collected data, sufficient to guarantee that the approximating solution, which is obtained from this collected data, converges to the unknown reference solution over time. These conditions are given in terms of the physical parameters.

[1]  R. Temam Navier-Stokes Equations , 1977 .

[2]  C. Foiaș,et al.  Sur le comportement global des solutions non-stationnaires des équations de Navier-Stokes en dimension $2$ , 1967 .

[3]  Edriss S. Titi,et al.  Determining nodes, finite difference schemes and inertial manifolds , 1991 .

[4]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[5]  R. Daley Atmospheric Data Analysis , 1991 .

[6]  Andrew J. Majda,et al.  Vorticity and Incompressible Flow: Index , 2001 .

[7]  Edriss S. Titi,et al.  Determining Modes for Continuous Data Assimilation in 2D Turbulence , 2003 .

[8]  Edriss S. Titi,et al.  Continuous data assimilation for the three-dimensional Brinkman–Forchheimer-extended Darcy model , 2015, 1502.00964.

[9]  Donald A. Jones,et al.  Determining finite volume elements for the 2D Navier-Stokes equations , 1992 .

[10]  Alan V. Oppenheim,et al.  ROBUSTNESS AND SIGNAL RECOVERY IN A SYNCHRONIZED CHAOTIC SYSTEM , 1993 .

[11]  Edriss S. Titi,et al.  Feedback Control of Nonlinear Dissipative Systems by Finite Determining Parameters - A Reaction-diffusion Paradigm , 2013, 1301.6992.

[12]  E. Titi,et al.  Determining modes and Grashof number in 2D turbulence: a numerical case study , 2008 .

[13]  Peter Korn,et al.  Data assimilation for the Navier–Stokes-α equations , 2009 .

[14]  E. Boschi Recensioni: J. L. Lions - Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod, Gauthier-Vi;;ars, Paris, 1969; , 1971 .

[15]  Darryl D. Holm,et al.  The Three Dimensional Viscous Camassa–Holm Equations, and Their Relation to the Navier–Stokes Equations and Turbulence Theory , 2001, nlin/0103039.

[16]  Bernardo Cockburn,et al.  Estimating the number of asymptotic degrees of freedom for nonlinear dissipative systems , 1997, Math. Comput..

[17]  Gerd Baumann,et al.  Navier–Stokes Equations on R3 × [0, T] , 2016 .

[18]  R. Temam,et al.  Determination of the solutions of the Navier-Stokes equations by a set of nodal values , 1984 .

[19]  Hakima Bessaih,et al.  Continuous data assimilation with stochastically noisy data , 2014, 1406.1533.

[20]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[21]  Edriss S. Titi,et al.  A determining form for the two-dimensional Navier-Stokes equations: The Fourier modes case , 2012 .

[22]  Edriss S. Titi,et al.  Continuous Data Assimilation Using General Interpolant Observables , 2013, J. Nonlinear Sci..

[23]  Единый подход к построению определяющих форм для двумерной системы уравнений Навье - Стокса: случай общих интерполирующих операторов@@@A unified approach to determining forms for the 2D Navier - Stokes equations - the general interpolants case , 2014 .

[24]  Edriss S. Titi,et al.  Data Assimilation algorithm for 3D B\'enard convection in porous media employing only temperature measurements , 2015, 1506.08678.