Continuous data assimilation for the three-dimensional Navier-Stokes-α model
暂无分享,去创建一个
Edriss S. Titi | Débora A. F. Albanez | Helena J. Nussenzveig Lopes | E. Titi | H. N. Lopes | E. Titi | Helena J. Nussenzveig Lopes
[1] R. Temam. Navier-Stokes Equations , 1977 .
[2] C. Foiaș,et al. Sur le comportement global des solutions non-stationnaires des équations de Navier-Stokes en dimension $2$ , 1967 .
[3] Edriss S. Titi,et al. Determining nodes, finite difference schemes and inertial manifolds , 1991 .
[4] J. Lions. Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .
[5] R. Daley. Atmospheric Data Analysis , 1991 .
[6] Andrew J. Majda,et al. Vorticity and Incompressible Flow: Index , 2001 .
[7] Edriss S. Titi,et al. Determining Modes for Continuous Data Assimilation in 2D Turbulence , 2003 .
[8] Edriss S. Titi,et al. Continuous data assimilation for the three-dimensional Brinkman–Forchheimer-extended Darcy model , 2015, 1502.00964.
[9] Donald A. Jones,et al. Determining finite volume elements for the 2D Navier-Stokes equations , 1992 .
[10] Alan V. Oppenheim,et al. ROBUSTNESS AND SIGNAL RECOVERY IN A SYNCHRONIZED CHAOTIC SYSTEM , 1993 .
[11] Edriss S. Titi,et al. Feedback Control of Nonlinear Dissipative Systems by Finite Determining Parameters - A Reaction-diffusion Paradigm , 2013, 1301.6992.
[12] E. Titi,et al. Determining modes and Grashof number in 2D turbulence: a numerical case study , 2008 .
[13] Peter Korn,et al. Data assimilation for the Navier–Stokes-α equations , 2009 .
[14] E. Boschi. Recensioni: J. L. Lions - Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod, Gauthier-Vi;;ars, Paris, 1969; , 1971 .
[15] Darryl D. Holm,et al. The Three Dimensional Viscous Camassa–Holm Equations, and Their Relation to the Navier–Stokes Equations and Turbulence Theory , 2001, nlin/0103039.
[16] Bernardo Cockburn,et al. Estimating the number of asymptotic degrees of freedom for nonlinear dissipative systems , 1997, Math. Comput..
[17] Gerd Baumann,et al. Navier–Stokes Equations on R3 × [0, T] , 2016 .
[18] R. Temam,et al. Determination of the solutions of the Navier-Stokes equations by a set of nodal values , 1984 .
[19] Hakima Bessaih,et al. Continuous data assimilation with stochastically noisy data , 2014, 1406.1533.
[20] R. Temam,et al. Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .
[21] Edriss S. Titi,et al. A determining form for the two-dimensional Navier-Stokes equations: The Fourier modes case , 2012 .
[22] Edriss S. Titi,et al. Continuous Data Assimilation Using General Interpolant Observables , 2013, J. Nonlinear Sci..
[24] Edriss S. Titi,et al. Data Assimilation algorithm for 3D B\'enard convection in porous media employing only temperature measurements , 2015, 1506.08678.