Local null controllability of the control-affine nonlinear systems with time-varying disturbances

The problem of local null controllability for the control-affine nonlinear systems $\dot x(t)=f(x(t))+Bu(t)+w(t),$ $t\in[0,T]$ is considered in this paper. The principal requirements on the system are that the LTI pair $\left((\partial f/\partial x)(0), B\right)$ is controllable and the disturbance is limited by the constraint $|f(0)+w(t)|\leq M_d\left(1-\frac{t}{T}\right)^\eta,$ $M_d\geq0$ and $\eta>0.$ These properties together with one technical assumption yield a complete answer to the problem of deciding when the null controllable region have a nonempty interior. The criteria obtained involve purely algebraic manipulations of vector field $f,$ input matrix $B$ and bound on the disturbance $w(t).$ To prove the main result we have derived a new Gronwall-type inequality allowing the fine estimates of the closed-loop solutions. The theory is illustrated and the efficacy of proposed controller is demonstrated by the examples where the null controllable region is explicitly calculated. Finally we established the sufficient conditions to be the system under consideration (with $w(t)\equiv 0$) globally null controllable.

[1]  H. Freud Mathematical Control Theory , 2016 .

[2]  P. Mhaskar,et al.  Enhanced stability regions for model predictive control of nonlinear process systems , 2008, 2008 American Control Conference.

[3]  R. Kálmán On the general theory of control systems , 1959 .

[4]  P. Mhaskar,et al.  Enhanced stability regions for model predictive control of nonlinear process systems , 2008 .

[5]  H. Sussmann,et al.  Controllability of nonlinear systems , 1972 .

[6]  Tingshu Hu,et al.  An explicit description of null controllable regions of linear systems with saturating actuators , 2002, Syst. Control. Lett..

[7]  Z Benzaid Global null controllability of perturbed linear systems with constrained controls , 1988 .

[8]  Digitization of nonautonomous control systems , 2003 .

[9]  R. Bellman Stability theory of differential equations , 1953 .

[10]  Wilson J. Rugh,et al.  Linear system theory (2nd ed.) , 1996 .

[11]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[12]  Pavol Brunovský,et al.  Local controllability of odd systems , 1976 .

[13]  C. Lobry Controllability of Nonlinear Systems on Compact Manifolds , 1974 .

[14]  Wei-Liang Chow Über Systeme von liearren partiellen Differentialgleichungen erster Ordnung , 1940 .

[15]  On a Null Controllability Region of Nonlinear Systems , 1980 .

[16]  E B Lee,et al.  Foundations of optimal control theory , 1967 .

[17]  P. Kloeden,et al.  Digitization of nonautonomous control systems , 2003 .

[18]  J. Coron Control and Nonlinearity , 2007 .

[19]  S. Bhat Controllability of Nonlinear Systems , 2022 .

[20]  C. Lobry Contr^olabilite des systemes non lineaires , 1970 .

[21]  A. Isidori Nonlinear Control Systems , 1985 .

[22]  R. E. Kalman,et al.  Controllability of linear dynamical systems , 1963 .

[23]  H. Sussmann A general theorem on local controllability , 1987 .

[24]  Wei-Liang Chow Über Systeme von linearen partiellen Differential-gleichungen erster Ordnung , 1941 .

[25]  L. Markus,et al.  On the Existence of Optimal Controls , 1962 .

[26]  R. Brockett System Theory on Group Manifolds and Coset Spaces , 1972 .