Connection between micrometeorites and Wild 2 particles: From Antarctic snow to cometary ices

We discuss the relationship between large cosmic dust that represents the main source of extraterrestrial matter presently accreted by the Earth and samples from comet 81P/Wild 2 returned by the Stardust mission in January 2006. Prior examinations of the Stardust samples have shown that Wild 2 cometary dust particles contain a large diversity of components, formed at various heliocentric distances. These analyses suggest large-scale radial mixing mechanism(s) in the early solar nebula and the existence of a continuum between primitive asteroidal and cometary matter. The recent collection of CONCORDIA Antarctic micrometeorites recovered from ultra-clean snow close to Dome C provides the most unbiased collection of large cosmic dust available for analyses in the laboratory. Many similarities can be found between Antarctic micrometeorites and Wild 2 samples, in terms of chemical, mineralogical, and isotopic compositions, and in the structure and composition of their carbonaceous matter. Cosmic dust in the form of CONCORDIA Antarctic micrometeorites and primitive IDPs are preferred samples to study the asteroid-comet continuum.

[1]  G. Flynn,et al.  Chemical composition and heterogeneity of Wild 2 cometary particles determined by synchrotron X‐ray fluorescence , 2008 .

[2]  Edward R. D. Scott,et al.  Chondrules and the Protoplanetary Disk , 2011 .

[3]  A. Westphal,et al.  TOF‐SIMS analysis of cometary matter in Stardust aerogel tracks , 2007 .

[4]  P. Hoppe,et al.  Mineralogy, chemistry, and oxygen isotopes of refractory inclusions from stratospheric interplanetary dust particles and micrometeorites , 1996 .

[5]  George D. Cody,et al.  The origin and evolution of chondrites recorded in the elemental and isotopic compositions of their macromolecular organic matter , 2007 .

[6]  D. Brownlee Cosmic Dust: Collection and Research , 1985 .

[7]  G. Libourel,et al.  Experimental simulation of atmospheric entry of micrometeorites , 2001 .

[8]  L. Leshin,et al.  Oxygen isotopic compositions of individual minerals in Antarctic micrometeorites: Further links to carbonaceous chondrites , 1999 .

[9]  Ian D. Hutcheon,et al.  Isotopic Compositions of Cometary Matter Returned by Stardust , 2006, Science.

[10]  D. Brownlee,et al.  Isotopic and elemental composition of iron, nickel, and chromium in type I deep-sea spherules: implications for origin and composition of the parent micrometeoroids , 1999 .

[11]  J. Borg,et al.  Dust from comet Wild 2: Interpreting particle size, shape, structure, and composition from impact features on the Stardust aluminum foils , 2008 .

[12]  Pierre Cartigny,et al.  Lead Isotopic Ages of Chondrules and Calcium-Aluminum – Rich Inclusions , 2022 .

[13]  D. Mckay,et al.  Unusual olivine and pyroxene composition in interplanetary dust and unequilibrated ordinary chondrites , 1989, Nature.

[14]  P. Rochette,et al.  Micrometeorites in the 400-1100 mu m size range from the transantarctic mountains , 2008 .

[15]  R. Zare,et al.  Observation of Indigenous Polycyclic Aromatic Hydrocarbons in ‘Giant’ carbonaceous Antarctic Micrometeorites , 1998, Origins of life and evolution of the biosphere.

[16]  C. Pillinger,et al.  The flux of meteorites to the Earth over the last 50 000 years , 1996 .

[17]  L. Bonal,et al.  Determination of the petrologic type of CV3 chondrites by Raman spectroscopy of included organic matter , 2006 .

[18]  D. Wooden Cometary Refractory Grains: Interstellar and Nebular Sources , 2008 .

[19]  T. Osawa,et al.  Mineralogy of Ultracarbonaceous Large Micrometeorites , 2005 .

[20]  A. Tsuchiyama,et al.  Chondrulelike Objects in Short-Period Comet 81P/Wild 2 , 2008, Science.

[21]  I. Gilmour,et al.  1.10 – Structural and Isotopic Analysis of Organic Matter in Carbonaceous Chondrites , 2003 .

[22]  H. C. Lord Molecular equilibria and condensation in a solar nebula and cool stellar atmospheres , 1965 .

[23]  S. Pizzarello,et al.  Amino acids in meteorites. , 1983, Advances in space research : the official journal of the Committee on Space Research.

[24]  Christopher P. McKay,et al.  Comets and the origin and evolution of life , 2006 .

[25]  M. Zolensky,et al.  Mineralogy and Crystallography of Comet 81P/Wild 2 Particles , 2007 .

[26]  G. Flynn,et al.  Characterization of carbon‐ and nitrogen‐rich particle fragments captured from comet 81P/Wild 2 , 2008 .

[27]  E. Quirico,et al.  Immature Carbonaceous Matter in CONCORDIA Antarctic Micrometeorites , 2009 .

[28]  Tomoki Nakamura,et al.  Bulk mineralogy of individual micrometeorites determined by X-ray diffraction analysis and transmission electron microscopy , 2001 .

[29]  Hideyasu Kojima,et al.  The collection of micrometeorites in the Yamato Meteorite Ice Field of Antarctica in 1998 , 2000 .

[30]  S. Pizzarello,et al.  Isotopic analyses of amino acids from the Murchison meteorite. , 1991, Geochimica et cosmochimica acta.

[31]  Paul D. Spudis,et al.  36th Lunar and Planetary Science Conference , 2005 .

[32]  A. Tsuchiyama,et al.  Bulk mineralogy and three‐dimensional structures of individual Stardust particles deduced from synchrotron X‐ray diffraction and microtomography analysis , 2008 .

[33]  Kentaro Uesugi,et al.  Elemental Compositions of Comet 81P/Wild 2 Samples Collected by Stardust , 2006, Science.

[34]  G. Flynn,et al.  Carbonate in Comets: A Comparison of Comets 1P/Halley, 9P/Temple 1, and 81P/Wild 2 , 2008 .

[35]  M. Maurette,et al.  Characteristics and mass distribution of extraterrestrial dust from the Greenland ice cap , 1987, Nature.

[36]  D. Mckay,et al.  Carbon abundance and silicate mineralogy of anhydrous interplanetary dust particles. , 1993, Geochimica et cosmochimica acta.

[37]  C. Engrand,et al.  Small Antarctic micrometeorites: A mineralogical and in situ oxygen isotope study , 2005 .

[38]  L. Leshin,et al.  Oxygen isotopic composition of chondritic interplanetary dust particles: A genetic link between carbonaceous chondrites and comets , 2009 .

[39]  C. Engrand,et al.  Accretion of neon, organics, CO2, nitrogen and water from large interplanetary dust particles on the early Earth , 2000 .

[40]  E. Jessberger Rocky Cometary Particulates: Their Elemental, Isotopic and Mineralogical Ingredients , 1999 .

[41]  C. Engrand,et al.  Carbonaceous micrometeorites from Antarctica , 1998, Meteoritics & planetary science.

[42]  C. Moore,et al.  Amino Acid Analyses of the Murchison, Murray, and Allende Carbonaceous Chondrites , 1971, Science.

[43]  C. Hammer,et al.  Micrometeorites from Central Antarctic snow: The CONCORDIA collection , 2004 .

[44]  Tomoki Nakamura,et al.  Oxygen isotopic and chemical compositions of cosmic spherules collected from the Antarctic ice sheet : Implications for their precursor materials , 2005 .

[45]  A. Westphal,et al.  Carbon investigation of two Stardust particles: A TEM, NanoSIMS, and XANES study , 2008 .

[46]  D. Brownlee,et al.  A Direct Measurement of the Terrestrial Mass Accretion Rate of Cosmic Dust , 1993, Science.

[47]  J. Rouzaud,et al.  The High Resolution Transmission Electron Microscopy: A Powerful Tool for Studying the Organization of Terrestrial and Extra-Terrestrial Carbons , 2005 .

[48]  James H. Lever,et al.  Numbers, types, and compositions of an unbiased collection of cosmic spherules , 2000 .

[49]  J. Borg,et al.  Transmission electron microscopy of cometary residues from micron‐sized craters in the Stardust Al foils , 2008 .

[50]  H. C. Connolly,et al.  On the Relationship Between Chondrites, Comets, and Asteroids, a Petrologic Perspective , 2008 .

[51]  M. Bizzarro,et al.  Chronology of the Solar System’s Oldest Solids , 2008 .

[52]  Scott A. Sandford,et al.  Detection of cometary amines in samples returned by Stardust , 2008 .

[53]  T. Tyliszczak,et al.  Quantitative organic and light‐element analysis of comet 81P/Wild 2 particles using C‐, N‐, and O‐μ‐XANES , 2008 .

[54]  E. Quirico,et al.  NEW CLUES ON COMPOSITION AND STRUCTURE OF CARBONACEOUS MATTER IN ANTARCTIC MICRO , 2008 .

[55]  D. Brownlee,et al.  Extraterrestrial platinum group nuggets in deep-sea sediments , 1984, Nature.

[56]  S. Taylor,et al.  Isotopic fractionation of iron, potassium, and oxygen in stony cosmic spherules; implications for heating histories and sources , 2005 .

[57]  Simon F. Green,et al.  Characteristics of cometary dust tracks in Stardust aerogel and laboratory calibrations , 2008 .

[58]  M. Fomenkova,et al.  Compositional trends in rock-forming elements of comet Halley dust. , 1992, Science.

[59]  A. Greshake The primitive matrix components of the unique carbonaceous chondrite Acfer 094: a TEM study. , 1997, Geochimica et cosmochimica acta.

[60]  J. Borg,et al.  A micro-Raman survey of 10 IDPs and 6 carbonaceous chondrites , 2005 .

[61]  C. Chyba,et al.  The cometary contribution to the oceans of primitive Earth , 1987, Nature.

[62]  K. Lodders Solar System Abundances and Condensation Temperatures of the Elements , 2003 .

[63]  J. Burns,et al.  Radiation forces on small particles in the solar system , 1979 .

[64]  H. Leroux,et al.  Pyroxenes microstructure in comet 81P/Wild 2 terminal Stardust particles , 2009 .

[65]  P. Pianetta,et al.  Recovering the elemental composition of comet Wild 2 dust in five Stardust impact tracks and terminal particles in aerogel , 2007 .

[66]  C. Chyba,et al.  Cometary delivery of organic molecules to the early Earth. , 1990, Science.

[67]  M. Maurette,et al.  Petrology and geochemistry of Antarctic micrometeorites , 1994 .

[68]  I. Franchi,et al.  Oxygen isotope ratios of large cosmic spherules: Carbonaceous and ordinary chondrite parent bodies , 2009 .

[69]  M. Chi,et al.  Comparing Wild 2 particles to chondrites and IDPs , 2008 .

[70]  R. Clayton,et al.  Oxygen isotopes in deep sea spherules , 1984 .

[71]  Ian A. Franchi,et al.  Light dement geochemistry of the Tagish Lake CI2 chondrite: Comparison with CI1 and CM2 meteorites , 2002 .

[72]  S. Taylor,et al.  The classification of micrometeorites , 2008 .

[73]  F. Robert The D/H Ratio in Chondrites , 2003 .

[74]  H. Fechtig,et al.  Interplanetary dust and zodiacal light; Proceedings of the Colloquium, 31st, Heidelberg, West Germany, June 10-13, 1975 , 1976 .

[75]  J. Bradley Chemically Anomalous, Preaccretionally Irradiated Grains in Interplanetary Dust from Comets , 1994, Science.

[76]  C. Engrand,et al.  FE-NI SULFIDES IN CONCORDIA ANTARCTIC MICROMETEORITES , 2007 .

[77]  A. Tielens,et al.  Airborne and groundbased spectrophotometry of comet P/Halley from 5-13 micrometers. , 1987, Astronomy and astrophysics.

[78]  A. Brearley Matrix and fine-grained rims in the unequilibrated CO3 chondrite, ALHA77307: Origins and evidence for diverse, primitive nebular dust components , 1993 .

[79]  Tomoki Nakamura,et al.  Mineralogy of phyllosilicate-rich micrometeorites and comparison with Tagish Lake and Sayama meteorites , 2002 .

[80]  A. Brack,et al.  Carbonaceous Phases in Antarctic Micrometeorites and Their Mineralogical Environment. Their Contribution to the Possible Role of Micrometeorites as , 1995 .

[81]  Hajime Yano,et al.  Mineralogy and Petrology of Comet 81P/Wild 2 Nucleus Samples , 2006, Science.

[82]  Susan Taylor,et al.  Concentration and variability of the AIB amino acid in polar micrometeorites: Implications for the exogenous delivery of amino acids to the primitive Earth , 2004 .

[83]  P. Hoppe,et al.  Trace Elements and Oxygen Isotopes in a CAI-bearing Micrometeorite from Antarctica , 1995 .

[84]  H. Ishii,et al.  A refractory inclusion returned by Stardust from comet 81P/Wild 2 , 2008 .

[85]  M. Maurette Carbonaceous Micrometeorites and the Origin of Life , 1998, Origins of life and evolution of the biosphere.

[86]  M. Burchell,et al.  Thermal alteration of hydrated minerals during hypervelocity capture to silica aerogel at the flyby speed of Stardust , 2007 .

[87]  J. Bradley Analysis of chondritic interplanetary dust thin-sections , 1988 .

[88]  Ian Wright,et al.  Impact Features on Stardust: Implications for Comet 81P/Wild 2 Dust , 2006, Science.

[89]  D. Brownlee,et al.  Cosmic spherules in the geologic record , 1991 .

[90]  MICHAEL H. BRIGGS,et al.  Complex Organic Micro-Structures in the Mokoia Meteorite , 1962, Nature.

[91]  L. Nittler,et al.  Combined micro‐Raman, micro‐infrared, and field emission scanning electron microscope analyses of comet 81P/Wild 2 particles collected by Stardust , 2008 .

[92]  P. Spurný,et al.  Meteorites from the Outer Solar System , 2008 .

[93]  J. Bada,et al.  A Search For Extraterrestrial Amino Acids In Polar Ice , 1996 .

[94]  Hideo Ohashi,et al.  Antarctic micrometeorites collected at the Dome Fuji Station , 1999 .

[95]  A. Meibom,et al.  Evidence for the insignificance of ordinary chondritic material in the asteroid belt , 1999 .

[96]  F. Robert,et al.  Extraterrestrial water in micrometeorites and cosmic spherules from Antarctica: An ion microprobe study , 1999 .

[97]  K. J. Meech,et al.  Spitzer Spectral Observations of the Deep Impact Ejecta , 2006, Science.

[98]  J. Rouzaud,et al.  Maturation grade of coals as revealed by Raman spectroscopy: progress and problems. , 2005, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[99]  Ronald A. Nieman,et al.  The Organic Content of the Tagish Lake Meteorite , 2001, Science.

[100]  G. Flynn,et al.  TOF‐SIMS analysis of crater residues from Wild 2 cometary particles on Stardust aluminum foil , 2008 .

[101]  S. Taylor,et al.  Seeking Unbiased Collections of Modern and Ancient Micrometeorites , 2001 .

[102]  Michel Maurette,et al.  Micrometeorites and the Mysteries of Our Origins , 2006 .

[103]  M. Chi,et al.  Comparison of Comet 81P/Wild 2 Dust with Interplanetary Dust from Comets , 2008, Science.

[104]  L. Grossman Condensation in the primitive solar nebula , 1972 .

[105]  D. Brownlee,et al.  Isotopic compositions of oxygen, iron, chromium, and nickel in cosmic spherules: Toward a better comprehension of atmospheric entry heating effects , 2005 .

[106]  James H. Lever,et al.  Accretion rate of cosmic spherules measured at the South Pole , 1998, Nature.

[107]  D E Brownlee,et al.  Placers of Cosmic Dust in the Blue Ice Lakes of Greenland , 1986, Science.

[108]  M. Zolensky,et al.  Mineralogy of carbonaceous chondritic microclasts in howardites: identification of C2 fossil micrometeorites , 2003 .

[109]  N. Tomioka,et al.  Silicate minerals and Si‐O glass in comet Wild 2 samples: Transmission electron microscopy , 2008 .

[110]  R. Braucher,et al.  Micrometeorites from the Transantarctic Mountains , 2008, Proceedings of the National Academy of Sciences.

[111]  G. Flynn,et al.  TOF‐SIMS analysis of cometary particles extracted from Stardust aerogel , 2008 .

[112]  P. Hoppe,et al.  A Chondrule Micrometeorite from Antarctica with Vapor-Fractionated Trace-Element Abundances , 1996 .

[113]  Andrew Steele,et al.  Comet 81P/Wild 2 Under a Microscope , 2006, Science.

[114]  M. Grady,et al.  Chondrules in Antarctic micrometeorites , 2005 .

[115]  M. Zolensky,et al.  Hydrogen isotopic composition of water from fossil micrometeorites in howardites , 2005 .

[116]  H. Leroux,et al.  Thermal history, partial preservation and sampling bias recorded by Stardust cometary grains during their capture , 2008 .

[117]  M. Fomenkova On the Organic Refractory Component of Cometary Dust , 1999 .

[118]  J. Bridges,et al.  A TEM study of thermally modified comet 81P/Wild 2 dust particles by interactions with the aerogel matrix during the Stardust capture process , 2008 .

[119]  L. d'Hendecourt,et al.  A ‘dry’ condensation origin for circumstellar carbonates , 2005, Nature.

[120]  Pascale Ehrenfreund,et al.  Indigenous amino acids in primitive CR meteorites , 2007 .

[121]  D. Brownlee,et al.  Interplanetary Dust; A New Source of Extraterrestrial Material for Laboratory Studies , 1977 .

[122]  Hideyasu Kojima,et al.  General characterization of Antarctic micrometeorites collected by the 39th Japanese Antarctic Research Expedition: Consortium studies of JARE AMMs (III) , 2001 .

[123]  R. Clayton Oxygen Isotopes in Meteorites , 2003 .

[124]  M. Genge Koronis asteroid dust within Antarctic ice , 2008 .

[125]  C. Koeberl,et al.  The Abundance of Ordinary Chondrite Debris Among Antarctic Micrometeorites , 1995 .

[126]  J. S. Dohnanyi Sources of interplanetary dust: Asteroids , 1976 .

[127]  Andrew Steele,et al.  Organics Captured from Comet 81P/Wild 2 by the Stardust Spacecraft , 2006, Science.

[128]  Michael E. Zolensky,et al.  Organic Globules in the Tagish Lake Meteorite: Remnants of the Protosolar Disk , 2006, Science.

[129]  H. Leroux,et al.  Oxidation state of iron and extensive redistribution of sulfur in thermally modified Stardust particles , 2009 .

[130]  S. Pizzarello,et al.  Non-racemic amino acids in the Murray and Murchison meteorites. , 2000, Geochimica et cosmochimica acta.

[131]  P. Farinella,et al.  Efficient delivery of meteorites to the Earth from a wide range of asteroid parent bodies , 2000, Nature.

[132]  M. Grady,et al.  The textures and compositions of fine-grained Antarctic micrometeorites: Implications for comparisons with meteorites , 1997 .

[133]  M. Bourot‐Denise,et al.  A collection of diverse micrometeorites recovered from 100 tonnes of Antarctic blue ice , 1991, Nature.

[134]  H. Leroux,et al.  Letter. Igneous Ca-rich pyroxene in comet 81P/Wild 2 , 2008 .

[135]  M. B. Blanchard,et al.  Meteoroid ablation spheres from deep-sea sediments , 1980 .

[136]  M. Maurette Cometary Micrometeorites in Planetology, Exobiology, and Early Climatology , 2006 .

[137]  D. Brownlee,et al.  A nuclear microprobe study of the distribution and concentration of carbon and nitrogen in Murchison and Tagish Lake meteorites, Antarctic micrometeorites, and IDPs: Implications for astrobiology , 2003 .