Antenna array design using generalized fitness functions

Small antenna arrays can provide dynamic signal gain and interference rejection enabling wireless networks to communicate in difficult radio environments. Optimal array design has focused on simplified objective functions to facilitate solution. We extend previous research by using fitness functions more directly related to network performance. Particle swarm optimization is used to design new array geometries, and performance is evaluated using randomized array designs and fitness distributions. Robustness to interference from multiple directions is evaluated while accounting for array angle dependence.

[1]  Robert F. Kubichek,et al.  Antenna array geometry for mobile ad-hoc networks , 2014, 2014 International Conference on Computing, Networking and Communications (ICNC).

[2]  B. P. Kumar,et al.  Generalized analytical technique for the synthesis of unequally spaced arrays with linear, planar, cylindrical or spherical geometry , 2005, IEEE Transactions on Antennas and Propagation.

[3]  M. M. Dawoud,et al.  Null steering in phased arrays by controlling the element positions , 1991 .

[4]  Klaus Solbach,et al.  Performance Optimization of Monopole Four-Square Array Antenna using the Method of Genetic Algorithms , 2007 .

[5]  James Blondin,et al.  Particle Swarm Optimization: A Tutorial , 2009 .

[6]  M. H. Er,et al.  Linear array geometry synthesis with minimum sidelobe level and null control , 1994 .

[7]  S. Bellofiore,et al.  Smart antennas for wireless communications , 2001, IEEE Antennas and Propagation Society International Symposium. 2001 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.01CH37229).

[8]  C. Balanis,et al.  Optimizing Antenna Array Geometry for Interference Suppression , 2007, IEEE Transactions on Antennas and Propagation.

[9]  A. P. Anderson,et al.  Array pattern nulling by element position perturbations using a genetic algorithm , 1994 .

[10]  Y. Bar-Ness,et al.  A new approach to array geometry for improved spatial spectrum estimation , 1985, Proceedings of the IEEE.

[11]  R. F. Kubichek,et al.  Low complexity hybrid analog/digital phased array for ad-hoc networks , 2012, 2012 IEEE International Workshop on Antenna Technology (iWAT).

[12]  A. C. Kot,et al.  Optimization of array geometry for identifiable high resolution parameter estimation in sensor array signal processing , 1997, Proceedings of ICICS, 1997 International Conference on Information, Communications and Signal Processing. Theme: Trends in Information Systems Engineering and Wireless Multimedia Communications (Cat..

[13]  Constantine A. Balanis,et al.  Introduction to Smart Antennas , 2007, Introduction to Smart Antennas.

[14]  Goutham Kamath,et al.  Optimal trajectory determination of a single moving beacon for efficient localization in a mobile ad-hoc network , 2013, Ad Hoc Networks.

[15]  C. Christodoulou,et al.  Linear array geometry synthesis with minimum sidelobe level and null control using particle swarm optimization , 2005, IEEE Transactions on Antennas and Propagation.

[16]  S. T. Smith,et al.  Optimum phase-only adaptive nulling , 1999, IEEE Trans. Signal Process..