Upper semicontinuity of pullback attractors for nonclassical diffusion equations

Our aim in this paper is to study the long time behavior, in terms of upper semicontinuous property of pullback attractors, of nonclassical diffusion equations with nonautonomous perturbation. Specifically, we prove that, under some proper assumptions, the pullback attractor {Ae(t)}t∊R of Eq. (1) and the global attractor A of Eq. (1) with e=0 satisfy lime→0+ distX(Ae(t),A)=0 for any t∊R.

[1]  Tomasz W. Dłotko,et al.  Global Attractors in Abstract Parabolic Problems , 2000 .

[2]  Jack K. Hale,et al.  Infinite dimensional dynamical systems , 1983 .

[3]  P. Bates,et al.  ATTRACTORS FOR STOCHASTIC LATTICE DYNAMICAL SYSTEMS , 2006 .

[4]  Elias C. Aifantis,et al.  On the problem of diffusion in solids , 1980 .

[5]  James C. Robinson,et al.  Upper semicontinuity of attractors for small random perturbations of dynamical systems , 1998 .

[6]  Yonghai Wang Pullback attractors for nonautonomous wave equations with critical exponent , 2008 .

[7]  Paul Glendinning,et al.  From finite to infinite dimensional dynamical systems , 2001 .

[8]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[9]  R. Temam Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .

[10]  M. Vishik,et al.  Attractors of Evolution Equations , 1992 .

[11]  G. Sell,et al.  Dynamics of Evolutionary Equations , 2002 .

[12]  José A. Langa,et al.  The stability of attractors for non-autonomous perturbations of gradient-like systems , 2007 .

[13]  M. Gurtin,et al.  On a theory of heat conduction involving two temperatures , 1968 .

[14]  Meihua Yang,et al.  Dynamics of the nonclassical diffusion equations , 2008, Asymptot. Anal..

[15]  Amnon Pazy,et al.  Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.

[16]  Desheng Li,et al.  On the dynamics of a class of nonclassical parabolic equations , 2006 .

[17]  Daniel B. Henry Geometric Theory of Semilinear Parabolic Equations , 1989 .

[18]  Chengkui Zhong,et al.  Necessary and sufficient conditions for the existence of global attractors for semigroups and applications , 2002 .

[19]  Sergey Zelik,et al.  Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent , 2004 .

[20]  Tomás Caraballo,et al.  Pullback attractors for asymptotically compact non-autonomous dynamical systems , 2006 .

[21]  James C. Robinson,et al.  On the continuity of pullback attractors for evolution processes , 2009 .

[22]  Jack K. Hale,et al.  A damped hyerbolic equation with critical exponent , 1992 .

[23]  H. Crauel,et al.  Attractors for random dynamical systems , 1994 .

[24]  James C. Robinson Stability of random attractors under perturbation and approximation , 2002 .

[25]  J. Hale Asymptotic Behavior of Dissipative Systems , 1988 .

[26]  Chunyou Sun,et al.  Global Attractors for a Nonclassical Diffusion Equation , 2007 .

[27]  T. Caraballo,et al.  ON THE UPPER SEMICONTINUITY OF COCYCLE ATTRACTORS FOR NON-AUTONOMOUS AND RANDOM DYNAMICAL SYSTEMS , 2003 .

[28]  V. Chepyzhov,et al.  Attractors for Equations of Mathematical Physics , 2001 .

[29]  Yue-long Xiao Attractors for a Nonclassical Diffusion Equation , 2002 .