Unique membrane properties and enhanced signal processing in human neocortical neurons

The advanced cognitive capabilities of the human brain are often attributed to our recently evolved neocortex. However, it is not known whether the basic building blocks of the human neocortex, the pyramidal neurons, possess unique biophysical properties that might impact on cortical computations. Here we show that layer 2/3 pyramidal neurons from human temporal cortex (HL2/3 PCs) have a specific membrane capacitance (Cm) of ~0.5 µF/cm2, half of the commonly accepted 'universal' value (~1 µF/cm2) for biological membranes. This finding was predicted by fitting in vitro voltage transients to theoretical transients then validated by direct measurement of Cm in nucleated patch experiments. Models of 3D reconstructed HL2/3 PCs demonstrated that such low Cm value significantly enhances both synaptic charge-transfer from dendrites to soma and spike propagation along the axon. This is the first demonstration that human cortical neurons have distinctive membrane properties, suggesting important implications for signal processing in human neocortex. DOI: http://dx.doi.org/10.7554/eLife.16553.001

[1]  The neuron doctrine - theory and facts , 2018 .

[2]  Patrick R. Hof,et al.  Automated evolutionary optimization of ion channel conductances and kinetics in models of young and aged rhesus monkey pyramidal neurons , 2016, Journal of Computational Neuroscience.

[3]  R. Angus Silver,et al.  Functional Properties of Dendritic Gap Junctions in Cerebellar Golgi Cells , 2016, Neuron.

[4]  S. Orlowski,et al.  Cholesterol and Sphingomyelin-Containing Model Condensed Lipid Monolayers: Heterogeneities Involving Ordered Microdomains Assessed by Two Cholesterol Derivatives. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[5]  James G. King,et al.  Reconstruction and Simulation of Neocortical Microcircuitry , 2015, Cell.

[6]  Guy Eyal,et al.  Dendritic and Axonal Architecture of Individual Pyramidal Neurons across Layers of Adult Human Neocortex , 2015, Cerebral cortex.

[7]  S. Pääbo,et al.  Organization and Evolution of Brain Lipidome Revealed by Large-Scale Analysis of Human, Chimpanzee, Macaque, and Mouse Tissues , 2015, Neuron.

[8]  Mark T. Harnett,et al.  Distribution and Function of HCN Channels in the Apical Dendritic Tuft of Neocortical Pyramidal Neurons , 2015, The Journal of Neuroscience.

[9]  Idan Segev,et al.  Contribution of Intracolumnar Layer 2/3-to-Layer 2/3 Excitatory Connections in Shaping the Response to Whisker Deflection in Rat Barrel Cortex , 2013, Cerebral cortex.

[10]  Daniele Linaro,et al.  High Bandwidth Synaptic Communication and Frequency Tracking in Human Neocortex , 2014, PLoS biology.

[11]  Idan Segev,et al.  Dendrites Impact the Encoding Capabilities of the Axon , 2014, The Journal of Neuroscience.

[12]  M. Larkum,et al.  NMDA spikes enhance action potential generation during sensory input , 2014, Nature Neuroscience.

[13]  C. D. de Kock,et al.  Mechanisms Underlying the Rules for Associative Plasticity at Adult Human Neocortical Synapses , 2013, The Journal of Neuroscience.

[14]  Rafael Yuste,et al.  Age-based comparison of human dendritic spine structure using complete three-dimensional reconstructions. , 2013, Cerebral cortex.

[15]  Markus R Wenk,et al.  Comparative Lipidomic Analysis of Mouse and Human Brain with Alzheimer Disease* , 2011, The Journal of Biological Chemistry.

[16]  Henry Markram,et al.  Models of Neocortical Layer 5b Pyramidal Cells Capturing a Wide Range of Dendritic and Perisomatic Active Properties , 2011, PLoS Comput. Biol..

[17]  Javier DeFelipe,et al.  The Evolution of the Brain, the Human Nature of Cortical Circuits, and Intellectual Creativity , 2011, Front. Neuroanat..

[18]  J. Kaas,et al.  Connectivity-driven white matter scaling and folding in primate cerebral cortex , 2010, Proceedings of the National Academy of Sciences.

[19]  C. D. de Kock,et al.  Frontiers in Synaptic Neuroscience Synaptic Neuroscience , 2022 .

[20]  Peter Jonas,et al.  Distinct nonuniform cable properties optimize rapid and efficient activation of fast-spiking GABAergic interneurons , 2009, Proceedings of the National Academy of Sciences.

[21]  A. Polsky,et al.  Synaptic Integration in Tuft Dendrites of Layer 5 Pyramidal Neurons: A New Unifying Principle , 2009, Science.

[22]  A. Heynen,et al.  Methodological approaches to exploring epileptic disorders in the human brain in vitro , 2008 .

[23]  Idan Segev,et al.  Modeling a layer 4-to-layer 2/3 module of a single column in rat neocortex: Interweaving in vitro and in vivo experimental observations , 2007, Proceedings of the National Academy of Sciences.

[24]  J. Allman,et al.  Dendritic architecture of the von Economo neurons , 2006, Neuroscience.

[25]  G. Stuart,et al.  Single Ih Channels in Pyramidal Neuron Dendrites: Properties, Distribution, and Impact on Action Potential Output , 2006, The Journal of Neuroscience.

[26]  Paul A. Rhodes,et al.  The Properties and Implications of NMDA Spikes in Neocortical Pyramidal Cells , 2006, The Journal of Neuroscience.

[27]  G. Tamás,et al.  Excitatory Effect of GABAergic Axo-Axonic Cells in Cortical Microcircuits , 2006, Science.

[28]  Michael L. Hines,et al.  The NEURON Book , 2006 .

[29]  Nelson Spruston,et al.  Factors mediating powerful voltage attenuation along CA1 pyramidal neuron dendrites , 2005, The Journal of physiology.

[30]  M. London,et al.  Dendritic computation. , 2005, Annual review of neuroscience.

[31]  J. C. Lodder,et al.  NMDA receptors induce somatodendritic secretion in hypothalamic neurones of lactating female rats , 2004, The Journal of physiology.

[32]  J. DeFelipe,et al.  Microstructure of the neocortex: Comparative aspects , 2002, Journal of neurocytology.

[33]  M. Häusser,et al.  Compartmental models of rat cerebellar Purkinje cells based on simultaneous somatic and dendritic patch‐clamp recordings , 2001, The Journal of physiology.

[34]  G. Elston,et al.  The Pyramidal Cell in Cognition: A Comparative Study in Human and Monkey , 2001, The Journal of Neuroscience.

[35]  J. Jacobs,et al.  Regional dendritic and spine variation in human cerebral cortex: a quantitative golgi study. , 2001, Cerebral cortex.

[36]  Bartlett W. Mel,et al.  Impact of Active Dendrites and Structural Plasticity on the Memory Capacity of Neural Tissue , 2001, Neuron.

[37]  I Segev,et al.  Untangling dendrites with quantitative models. , 2000, Science.

[38]  G. Stuart,et al.  Direct measurement of specific membrane capacitance in neurons. , 2000, Biophysical journal.

[39]  L. Garey Brodmann's localisation in the cerebral cortex , 1999 .

[40]  J. Magee Dendritic Hyperpolarization-Activated Currents Modify the Integrative Properties of Hippocampal CA1 Pyramidal Neurons , 1998, The Journal of Neuroscience.

[41]  N. Spruston,et al.  Determinants of Voltage Attenuation in Neocortical Pyramidal Neuron Dendrites , 1998, The Journal of Neuroscience.

[42]  H. Lüscher,et al.  Passive electrical properties of ventral horn neurons in rat spinal cord slices. , 1998, Journal of neurophysiology.

[43]  A. Pestronk Histology of the Nervous System of Man and Vertebrates , 1997, Neurology.

[44]  T. Sejnowski,et al.  [Letters to nature] , 1996, Nature.

[45]  B Sakmann,et al.  Detailed passive cable models of whole-cell recorded CA3 pyramidal neurons in rat hippocampal slices , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[46]  B. Sakmann,et al.  Active propagation of somatic action potentials into neocortical pyramidal cell dendrites , 1994, Nature.

[47]  I Segev,et al.  Signal delay and input synchronization in passive dendritic structures. , 1993, Journal of neurophysiology.

[48]  J J Jack,et al.  Solutions for transients in arbitrarily branching cables: I. Voltage recording with a somatic shunt. , 1993, Biophysical journal.

[49]  J J Jack,et al.  Solutions for transients in arbitrarily branching cables: II. Voltage clamp theory. , 1993, Biophysical journal.

[50]  W Rall,et al.  Matching dendritic neuron models to experimental data. , 1992, Physiological reviews.

[51]  Idan Segev,et al.  The Impact of Parallel Fiber Background Activity on the Cable Properties of Cerebellar Purkinje Cells , 1992, Neural Computation.

[52]  C. Stevens,et al.  Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[53]  W Rall,et al.  Computational study of an excitable dendritic spine. , 1988, Journal of neurophysiology.

[54]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[55]  C. D. Fitch,et al.  The antimalarial drug mefloquine binds to membrane phospholipids , 1982, Antimicrobial Agents and Chemotherapy.

[56]  Alan Peters,et al.  A technique for estimating total spine numbers on golgi‐impregnated dendrites , 1979, The Journal of comparative neurology.

[57]  D. Prince,et al.  Cellular and field potential properties of epileptogenic hippocampal slices , 1978, Brain Research.

[58]  J. Jack,et al.  Electric current flow in excitable cells , 1975 .

[59]  K. Cole Membranes, ions, and impulses : a chapter of classical biophysics , 1968 .

[60]  A. Hodgkin,et al.  Measurement of current‐voltage relations in the membrane of the giant axon of Loligo , 1952, The Journal of physiology.

[61]  F. Massey The Kolmogorov-Smirnov Test for Goodness of Fit , 1951 .