Dimension-Robust MCMC in Bayesian Inverse Problems
暂无分享,去创建一个
[1] Ulrike von Luxburg,et al. A tutorial on spectral clustering , 2007, Stat. Comput..
[2] G. Wahba. Spline models for observational data , 1990 .
[3] T. J. Sullivan,et al. Well-posed Bayesian inverse problems and heavy-tailed stable quasi-Banach space priors , 2016, 1605.05898.
[4] Andrew M. Stuart,et al. Geometric MCMC for infinite-dimensional inverse problems , 2016, J. Comput. Phys..
[5] Gareth O. Roberts,et al. A General Framework for the Parametrization of Hierarchical Models , 2007, 0708.3797.
[6] G. Roberts,et al. Nonparametric estimation of diffusions: a differential equations approach , 2012 .
[7] Sebastian J. Vollmer,et al. Dimension-Independent MCMC Sampling for Inverse Problems with Non-Gaussian Priors , 2013, SIAM/ASA J. Uncertain. Quantification.
[8] E. Somersalo,et al. Existence and uniqueness for electrode models for electric current computed tomography , 1992 .
[9] Leonhard Held,et al. Gaussian Markov Random Fields: Theory and Applications , 2005 .
[10] A. Stuart,et al. The Bayesian Approach to Inverse Problems , 2013, 1302.6989.
[11] William R B Lionheart,et al. Uses and abuses of EIDORS: an extensible software base for EIT , 2006, Physiological measurement.
[12] J. Sethian,et al. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .
[13] Georg Stadler,et al. Mitigating the Influence of the Boundary on PDE-based Covariance Operators , 2016, 1610.05280.
[14] Andrea L. Bertozzi,et al. Multi-class Graph Mumford-Shah Model for Plume Detection Using the MBO scheme , 2014, EMMCVPR.
[15] Marco A. Iglesias,et al. A Bayesian Level Set Method for Geometric Inverse Problems , 2015, 1504.00313.
[16] Martin Burger,et al. Sparsity-promoting and edge-preserving maximum a posteriori estimators in non-parametric Bayesian inverse problems , 2017, 1705.03286.
[17] A. O'Hagan,et al. Bayesian calibration of computer models , 2001 .
[18] G. Roberts,et al. MCMC methods for diffusion bridges , 2008 .
[19] Andrew M. Stuart,et al. Uncertainty quantification for semi-supervised multi-class classification in image processing and ego-motion analysis of body-worn videos , 2019, Image Processing: Algorithms and Systems.
[20] Marco A. Iglesias,et al. Hierarchical Bayesian level set inversion , 2016, Statistics and Computing.
[21] G. Roberts,et al. On inference for partially observed nonlinear diffusion models using the Metropolis–Hastings algorithm , 2001 .
[22] Andrew M. Stuart,et al. Analysis of the Gibbs Sampler for Hierarchical Inverse Problems , 2013, SIAM/ASA J. Uncertain. Quantification.
[23] Lassi Roininen,et al. Whittle-Matérn priors for Bayesian statistical inversion with applications in electrical impedance tomography , 2014 .
[24] G. Roberts,et al. MCMC Methods for Functions: ModifyingOld Algorithms to Make Them Faster , 2012, 1202.0709.
[25] Andrew M. Stuart,et al. How Deep Are Deep Gaussian Processes? , 2017, J. Mach. Learn. Res..
[26] Andrew M. Stuart,et al. Importance Sampling: Computational Complexity and Intrinsic Dimension , 2015 .
[27] F. Santosa. A Level-set Approach Inverse Problems Involving Obstacles , 1995 .
[28] C. Mallows,et al. A Method for Simulating Stable Random Variables , 1976 .
[29] Andrew M. Stuart,et al. Posterior consistency for Gaussian process approximations of Bayesian posterior distributions , 2016, Math. Comput..
[30] Andrew M. Stuart,et al. Uncertainty Quantification in Graph-Based Classification of High Dimensional Data , 2017, SIAM/ASA J. Uncertain. Quantification.
[31] A. Stuart,et al. Besov priors for Bayesian inverse problems , 2011, 1105.0889.
[32] Kody J. H. Law. Proposals which speed up function-space MCMC , 2014, J. Comput. Appl. Math..
[33] A. W. Vaart,et al. Bayes procedures for adaptive inference in inverse problems for the white noise model , 2012, Probability Theory and Related Fields.
[34] Omiros Papaspiliopoulos,et al. Auxiliary gradient‐based sampling algorithms , 2016, 1610.09641.
[35] A. Stuart,et al. Conditional Path Sampling of SDEs and the Langevin MCMC Method , 2004 .
[36] M. Girolami,et al. Hyperpriors for Matérn fields with applications in Bayesian inversion , 2016, Inverse Problems & Imaging.
[37] J. Rosenthal,et al. Optimal scaling for various Metropolis-Hastings algorithms , 2001 .
[38] H. Rue,et al. An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach , 2011 .
[39] Tiangang Cui,et al. Dimension-independent likelihood-informed MCMC , 2014, J. Comput. Phys..
[40] Zheng Wang,et al. Bayesian Inverse Problems with l1 Priors: A Randomize-Then-Optimize Approach , 2016, SIAM J. Sci. Comput..
[41] Matti Lassas. Eero Saksman,et al. Discretization-invariant Bayesian inversion and Besov space priors , 2009, 0901.4220.
[42] Stig Larsson,et al. Posterior Contraction Rates for the Bayesian Approach to Linear Ill-Posed Inverse Problems , 2012, 1203.5753.
[43] Matthew M. Dunlop,et al. The Bayesian Formulation of EIT: Analysis and Algorithms , 2015, 1508.04106.
[44] Martina Nardon,et al. Simulation techniques for generalized Gaussian densities , 2006 .