Dimension-Robust MCMC in Bayesian Inverse Problems

The methodology developed in this article is motivated by a wide range of prediction and uncertainty quantification problems that arise in Statistics, Machine Learning and Applied Mathematics, such as non-parametric regression, multi-class classification and inversion of partial differential equations. One popular formulation of such problems is as Bayesian inverse problems, where a prior distribution is used to regularize inference on a high-dimensional latent state, typically a function or a field. It is common that such priors are non-Gaussian, for example piecewise-constant or heavy-tailed, and/or hierarchical, in the sense of involving a further set of low-dimensional parameters, which, for example, control the scale or smoothness of the latent state. In this formulation prediction and uncertainty quantification relies on efficient exploration of the posterior distribution of latent states and parameters. This article introduces a framework for efficient MCMC sampling in Bayesian inverse problems that capitalizes upon two fundamental ideas in MCMC, non-centred parameterisations of hierarchical models and dimension-robust samplers for latent Gaussian processes. Using a range of diverse applications we showcase that the proposed framework is dimension-robust, that is, the efficiency of the MCMC sampling does not deteriorate as the dimension of the latent state gets higher. We showcase the full potential of the machinery we develop in the article in semi-supervised multi-class classification, where our sampling algorithm is used within an active learning framework to guide the selection of input data to manually label in order to achieve high predictive accuracy with a minimal number of labelled data.

[1]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[2]  G. Wahba Spline models for observational data , 1990 .

[3]  T. J. Sullivan,et al.  Well-posed Bayesian inverse problems and heavy-tailed stable quasi-Banach space priors , 2016, 1605.05898.

[4]  Andrew M. Stuart,et al.  Geometric MCMC for infinite-dimensional inverse problems , 2016, J. Comput. Phys..

[5]  Gareth O. Roberts,et al.  A General Framework for the Parametrization of Hierarchical Models , 2007, 0708.3797.

[6]  G. Roberts,et al.  Nonparametric estimation of diffusions: a differential equations approach , 2012 .

[7]  Sebastian J. Vollmer,et al.  Dimension-Independent MCMC Sampling for Inverse Problems with Non-Gaussian Priors , 2013, SIAM/ASA J. Uncertain. Quantification.

[8]  E. Somersalo,et al.  Existence and uniqueness for electrode models for electric current computed tomography , 1992 .

[9]  Leonhard Held,et al.  Gaussian Markov Random Fields: Theory and Applications , 2005 .

[10]  A. Stuart,et al.  The Bayesian Approach to Inverse Problems , 2013, 1302.6989.

[11]  William R B Lionheart,et al.  Uses and abuses of EIDORS: an extensible software base for EIT , 2006, Physiological measurement.

[12]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[13]  Georg Stadler,et al.  Mitigating the Influence of the Boundary on PDE-based Covariance Operators , 2016, 1610.05280.

[14]  Andrea L. Bertozzi,et al.  Multi-class Graph Mumford-Shah Model for Plume Detection Using the MBO scheme , 2014, EMMCVPR.

[15]  Marco A. Iglesias,et al.  A Bayesian Level Set Method for Geometric Inverse Problems , 2015, 1504.00313.

[16]  Martin Burger,et al.  Sparsity-promoting and edge-preserving maximum a posteriori estimators in non-parametric Bayesian inverse problems , 2017, 1705.03286.

[17]  A. O'Hagan,et al.  Bayesian calibration of computer models , 2001 .

[18]  G. Roberts,et al.  MCMC methods for diffusion bridges , 2008 .

[19]  Andrew M. Stuart,et al.  Uncertainty quantification for semi-supervised multi-class classification in image processing and ego-motion analysis of body-worn videos , 2019, Image Processing: Algorithms and Systems.

[20]  Marco A. Iglesias,et al.  Hierarchical Bayesian level set inversion , 2016, Statistics and Computing.

[21]  G. Roberts,et al.  On inference for partially observed nonlinear diffusion models using the Metropolis–Hastings algorithm , 2001 .

[22]  Andrew M. Stuart,et al.  Analysis of the Gibbs Sampler for Hierarchical Inverse Problems , 2013, SIAM/ASA J. Uncertain. Quantification.

[23]  Lassi Roininen,et al.  Whittle-Matérn priors for Bayesian statistical inversion with applications in electrical impedance tomography , 2014 .

[24]  G. Roberts,et al.  MCMC Methods for Functions: ModifyingOld Algorithms to Make Them Faster , 2012, 1202.0709.

[25]  Andrew M. Stuart,et al.  How Deep Are Deep Gaussian Processes? , 2017, J. Mach. Learn. Res..

[26]  Andrew M. Stuart,et al.  Importance Sampling: Computational Complexity and Intrinsic Dimension , 2015 .

[27]  F. Santosa A Level-set Approach Inverse Problems Involving Obstacles , 1995 .

[28]  C. Mallows,et al.  A Method for Simulating Stable Random Variables , 1976 .

[29]  Andrew M. Stuart,et al.  Posterior consistency for Gaussian process approximations of Bayesian posterior distributions , 2016, Math. Comput..

[30]  Andrew M. Stuart,et al.  Uncertainty Quantification in Graph-Based Classification of High Dimensional Data , 2017, SIAM/ASA J. Uncertain. Quantification.

[31]  A. Stuart,et al.  Besov priors for Bayesian inverse problems , 2011, 1105.0889.

[32]  Kody J. H. Law Proposals which speed up function-space MCMC , 2014, J. Comput. Appl. Math..

[33]  A. W. Vaart,et al.  Bayes procedures for adaptive inference in inverse problems for the white noise model , 2012, Probability Theory and Related Fields.

[34]  Omiros Papaspiliopoulos,et al.  Auxiliary gradient‐based sampling algorithms , 2016, 1610.09641.

[35]  A. Stuart,et al.  Conditional Path Sampling of SDEs and the Langevin MCMC Method , 2004 .

[36]  M. Girolami,et al.  Hyperpriors for Matérn fields with applications in Bayesian inversion , 2016, Inverse Problems & Imaging.

[37]  J. Rosenthal,et al.  Optimal scaling for various Metropolis-Hastings algorithms , 2001 .

[38]  H. Rue,et al.  An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach , 2011 .

[39]  Tiangang Cui,et al.  Dimension-independent likelihood-informed MCMC , 2014, J. Comput. Phys..

[40]  Zheng Wang,et al.  Bayesian Inverse Problems with l1 Priors: A Randomize-Then-Optimize Approach , 2016, SIAM J. Sci. Comput..

[41]  Matti Lassas. Eero Saksman,et al.  Discretization-invariant Bayesian inversion and Besov space priors , 2009, 0901.4220.

[42]  Stig Larsson,et al.  Posterior Contraction Rates for the Bayesian Approach to Linear Ill-Posed Inverse Problems , 2012, 1203.5753.

[43]  Matthew M. Dunlop,et al.  The Bayesian Formulation of EIT: Analysis and Algorithms , 2015, 1508.04106.

[44]  Martina Nardon,et al.  Simulation techniques for generalized Gaussian densities , 2006 .