In-vivo high resolution AFM topographic imaging of Caenorhabditis elegans reveals previously unreported surface structures of cuticle mutants.
暂无分享,去创建一个
Mandayam A. Srinivasan | Vijay M. Pawar | Muna Elmi | Michael Shaw | M. Srinivasan | Clara L. Essmann | M. Shaw | M. Elmi | G. M. Anand | Giridhar M. Anand | C. Essmann | Muna Elmi
[1] T. L. Gumienny,et al. Visualization of Caenorhabditis elegans cuticular structures using the lipophilic vital dye DiI. , 2012, Journal of visualized experiments : JoVE.
[2] J. Muriel,et al. Two sets of interacting collagens form functionally distinct substructures within a Caenorhabditis elegans extracellular matrix. , 2003, Molecular biology of the cell.
[3] Jonathan Hodgkin,et al. Multiple Genes Affect Sensitivity of Caenorhabditis elegans to the Bacterial Pathogen Microbacterium nematophilum , 2005, Genetics.
[4] Creg Darby,et al. Caenorhabditis elegans Mutants Resistant to Attachment of Yersinia Biofilms , 2007, Genetics.
[5] R. Salgia,et al. Whole-animal mounts of Caenorhabditis elegans for 3D imaging using atomic force microscopy. , 2015, Nanomedicine : nanotechnology, biology, and medicine.
[6] H. Hertz. Ueber die Berührung fester elastischer Körper. , 1882 .
[7] Laurent Kreplak,et al. Introduction to Atomic Force Microscopy (AFM) in Biology , 2009, Current protocols in protein science.
[8] Simon Scheuring,et al. Introduction to Atomic Force Microscopy (AFM) in Biology , 2002, Current protocols in protein science.
[9] Leah Blau,et al. Methods In Cell Biology , 2016 .
[10] D. Hall,et al. Modern electron microscopy methods for C. elegans. , 2012, Methods in cell biology.
[11] W. Ryu,et al. Viscoelastic properties of the nematode Caenorhabditis elegans, a self-similar, shear-thinning worm , 2013, Proceedings of the National Academy of Sciences.
[12] B. L. Smith,et al. Biological applications of the AFM: From single molecules to organs , 1997, Int. J. Imaging Syst. Technol..
[13] David C Lin,et al. Robust strategies for automated AFM force curve analysis--I. Non-adhesive indentation of soft, inhomogeneous materials. , 2007, Journal of biomechanical engineering.
[14] P. Kuwabara,et al. A novel bacterial pathogen, Microbacterium nematophilum, induces morphological change in the nematode C. elegans , 2000, Current Biology.
[15] N. Munakata. [Genetics of Caenorhabditis elegans]. , 1989, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.
[16] G. Silverman,et al. C. elegans in high-throughput drug discovery. , 2014, Advanced drug delivery reviews.
[17] I. N. Sneddon. The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile , 1965 .
[18] M. Blaxter,et al. Toxocara canis: a labile antigenic surface coat overlying the epicuticle of infective larvae. , 1992, Experimental parasitology.
[19] A. P. Page,et al. The cuticle. , 2007, WormBook : the online review of C. elegans biology.
[20] Maria Markaki,et al. Modeling human diseases in Caenorhabditis elegans , 2010, Biotechnology journal.
[21] P. Russell,et al. SEM and AFM: Complementary Techniques for Surface Investigations , 2001 .
[22] P. Arratia,et al. Material properties of Caenorhabditis elegans swimming at low Reynolds number. , 2009, Biophysical journal.
[23] Michael O. Hengartner,et al. Finding function in novel targets: C. elegans as a model organism , 2006, Nature Reviews Drug Discovery.
[24] N. Jalili,et al. A review of atomic force microscopy imaging systems: application to molecular metrology and biological sciences , 2004 .