Cortical overgrowth in a preclinical forebrain organoid model of CNTNAP2-associated autism spectrum disorder

[1]  Maximilian Haeussler,et al.  Cell Stress in Cortical Organoids Impairs Molecular Subtype Specification , 2019, Nature.

[2]  Allan R. Jones,et al.  Conserved cell types with divergent features in human versus mouse cortex , 2019, Nature.

[3]  Evan Z. Macosko,et al.  Single-Cell Multi-omic Integration Compares and Contrasts Features of Brain Cell Identity , 2019, Cell.

[4]  Sean K. Simmons,et al.  Individual brain organoids reproducibly form cell diversity of the human cerebral cortex , 2019, Nature.

[5]  Olga Tanaseichuk,et al.  Metascape provides a biologist-oriented resource for the analysis of systems-level datasets , 2019, Nature Communications.

[6]  S. Douzgou,et al.  A patient with a novel CNTNAP2 homozygous variant: further delineation of the CASPR2 deficiency syndrome and review of the literature , 2019, Clinical dysmorphology.

[7]  B. Corneo,et al.  Generation of two iPS cell lines (FRIMOi003-A and FRIMOi004-A) derived from Stargardt patients carrying ABCA4 compound heterozygous mutations , 2019, Stem cell research.

[8]  A. Butte,et al.  Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage , 2018, Nature Immunology.

[9]  Vincent A. Traag,et al.  From Louvain to Leiden: guaranteeing well-connected communities , 2018, Scientific Reports.

[10]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection , 2018, J. Open Source Softw..

[11]  B. Schwaller,et al.  Dysregulation of Parvalbumin Expression in the Cntnap2−/− Mouse Model of Autism Spectrum Disorder , 2018, Front. Mol. Neurosci..

[12]  J. Honnorat,et al.  Contactin‐associated protein‐like 2, a protein of the neurexin family involved in several human diseases , 2018, The European journal of neuroscience.

[13]  Nathan E. Lewis,et al.  The ASD Living Biology: from cell proliferation to clinical phenotype , 2018, Molecular Psychiatry.

[14]  Yuanfang Guan,et al.  Brain-specific functional relationship networks inform autism spectrum disorder gene prediction , 2018, Translational Psychiatry.

[15]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction , 2018, ArXiv.

[16]  Fabian J Theis,et al.  SCANPY: large-scale single-cell gene expression data analysis , 2018, Genome Biology.

[17]  Alex A. Pollen,et al.  Spatiotemporal gene expression trajectories reveal developmental hierarchies of the human cortex , 2017, Science.

[18]  Alex A. Pollen,et al.  Human iPSC-Derived Cerebral Organoids Model Cellular Features of Lissencephaly and Reveal Prolonged Mitosis of Outer Radial Glia. , 2017, Cell stem cell.

[19]  F. Müller,et al.  An Organoid-Based Model of Cortical Development Identifies Non-Cell-Autonomous Defects in Wnt Signaling Contributing to Miller-Dieker Syndrome. , 2017, Cell reports.

[20]  M. Sur,et al.  Induction of Expansion and Folding in Human Cerebral Organoids. , 2017, Cell stem cell.

[21]  Damian J. Williams,et al.  Parkin Deficiency Reduces Hippocampal Glutamatergic Neurotransmission by Impairing AMPA Receptor Endocytosis , 2016, The Journal of Neuroscience.

[22]  Núria Queralt-Rosinach,et al.  DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants , 2016, Nucleic Acids Res..

[23]  Houxiang Zhu,et al.  CT-Finder: A Web Service for CRISPR Optimal Target Prediction and Visualization , 2016, Scientific Reports.

[24]  D. Geschwind,et al.  Altered proliferation and networks in neural cells derived from idiopathic autistic individuals , 2016, Molecular Psychiatry.

[25]  P. Striano,et al.  Characterisation of CASPR2 deficiency disorder - a syndrome involving autism, epilepsy and language impairment , 2015, bioRxiv.

[26]  Madeline A. Lancaster,et al.  Human cerebral organoids recapitulate gene expression programs of fetal neocortex development , 2015, Proceedings of the National Academy of Sciences.

[27]  P. Linsley,et al.  MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data , 2015, Genome Biology.

[28]  Roberto Sacco,et al.  Head circumference and brain size in autism spectrum disorder: A systematic review and meta-analysis , 2015, Psychiatry Research: Neuroimaging.

[29]  G. Church,et al.  Crispr-mediated Gene Targeting of Human Induced Pluripotent Stem Cells. , 2015, Current protocols in stem cell biology.

[30]  Guoping Feng,et al.  Modeling psychiatric disorders for developing effective treatments , 2015, Nature Medicine.

[31]  M. Gerstein,et al.  FOXG1-Dependent Dysregulation of GABA/Glutamate Neuron Differentiation in Autism Spectrum Disorders , 2015, Cell.

[32]  B. Schürmann,et al.  Synaptic abnormalities and cytoplasmic glutamate receptor aggregates in contactin associated protein-like 2/Caspr2 knockout neurons , 2015, Proceedings of the National Academy of Sciences.

[33]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[34]  T. Vos,et al.  The epidemiology and global burden of autism spectrum disorders , 2014, Psychological Medicine.

[35]  D. Bates,et al.  Fitting Linear Mixed-Effects Models Using lme4 , 2014, 1406.5823.

[36]  Allan R. Jones,et al.  Transcriptional Landscape of the Prenatal Human Brain , 2014, Nature.

[37]  M. Eiraku,et al.  Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell–derived neocortex , 2013, Proceedings of the National Academy of Sciences.

[38]  S. Horvath,et al.  Integrative Functional Genomic Analyses Implicate Specific Molecular Pathways and Circuits in Autism , 2013, Cell.

[39]  Wei Niu,et al.  Coexpression Networks Implicate Human Midfetal Deep Cortical Projection Neurons in the Pathogenesis of Autism , 2013, Cell.

[40]  David A. Scott,et al.  Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity , 2013, Cell.

[41]  Madeline A. Lancaster,et al.  Cerebral organoids model human brain development and microcephaly , 2013, Nature.

[42]  M. McInnis,et al.  Gene expression alterations in bipolar disorder postmortem brains , 2013, Bipolar disorders.

[43]  Wei Xu,et al.  Candidate autism gene screen identifies critical role for cell-adhesion molecule CASPR2 in dendritic arborization and spine development , 2012, Proceedings of the National Academy of Sciences.

[44]  Margaret D. King,et al.  The NKI-Rockland Sample: A Model for Accelerating the Pace of Discovery Science in Psychiatry , 2012, Front. Neurosci..

[45]  E. Courchesne,et al.  Neuron number and size in prefrontal cortex of children with autism. , 2011, JAMA.

[46]  J. Kleinman,et al.  Spatiotemporal transcriptome of the human brain , 2011, Nature.

[47]  D. Geschwind,et al.  Absence of CNTNAP2 Leads to Epilepsy, Neuronal Migration Abnormalities, and Core Autism-Related Deficits , 2011, Cell.

[48]  J. Gilmore,et al.  Infant Brain Atlases from Neonates to 1- and 2-Year-Olds , 2011, PloS one.

[49]  G. J. Ebrahim,et al.  WHO Child Growth Standards. Growth Velocity Based on Weight, Length and Head Circumference.Methods and Development , 2010 .

[50]  J. Kissil,et al.  Organization of Myelinated Axons by Caspr and Caspr2 Requires the Cytoskeletal Adapter Protein 4.1B , 2010, The Journal of Neuroscience.

[51]  Annette Schenck,et al.  CNTNAP2 and NRXN1 are mutated in autosomal-recessive Pitt-Hopkins-like mental retardation and determine the level of a common synaptic protein in Drosophila. , 2009, American journal of human genetics.

[52]  M. Hasegawa,et al.  Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome , 2009, Proceedings of the Japan Academy. Series B, Physical and biological sciences.

[53]  S. Horvath,et al.  WGCNA: an R package for weighted correlation network analysis , 2008, BMC Bioinformatics.

[54]  Sharmila Banerjee-Basu,et al.  AutDB: a gene reference resource for autism research , 2008, Nucleic Acids Res..

[55]  D. Geschwind,et al.  A Systems Level Analysis of Transcriptional Changes in Alzheimer's Disease and Normal Aging , 2008, The Journal of Neuroscience.

[56]  J. Sebat,et al.  Linkage, association, and gene-expression analyses identify CNTNAP2 as an autism-susceptibility gene. , 2008, American journal of human genetics.

[57]  D. Geschwind,et al.  Genome-wide analyses of human perisylvian cerebral cortical patterning , 2007, Proceedings of the National Academy of Sciences.

[58]  Anne E Carpenter,et al.  CellProfiler: image analysis software for identifying and quantifying cell phenotypes , 2006, Genome Biology.

[59]  S. Herculano‐Houzel,et al.  Cellular scaling rules for rodent brains , 2006, Proceedings of the National Academy of Sciences.

[60]  D. Stephan,et al.  Recessive symptomatic focal epilepsy and mutant contactin-associated protein-like 2. , 2006, The New England journal of medicine.

[61]  C. Walsh,et al.  Molecular insights into human brain evolution , 2005, Nature.

[62]  Roberto Lent,et al.  Isotropic Fractionator: A Simple, Rapid Method for the Quantification of Total Cell and Neuron Numbers in the Brain , 2005, The Journal of Neuroscience.

[63]  J. Bradbury Molecular Insights into Human Brain Evolution , 2005, PLoS biology.

[64]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[65]  Z. Molnár,et al.  Cerebral cortical development in rodents and primates. , 2012, Progress in brain research.